THE EFFECTS OF DITCHING ON THE CAPTERET COUNTY, NORTH CAROLINA CARTERET COUNTY, NORTH CAROLINA CIRCULATING CONSISTON Sea Grant Depositon

AND

DR. KENNETH L. KNIGHT DEPARTMENT HEAD AND PROFESSOR DEPARTMENT OF ENTOMOLOGY AGRICULTURAL EXPERIMENT STATION SCHOOL OF AGRICULTURE AND LIFE SCIENCES NORTH CAROLINA STATE UNIVERSITY

JUNE 1973

Water Resources Research Institute OF THE UNIVERSITY OF NORTH CAROLINA

University of North Carolina Sea Grant Reprint #30

Price — \$2.50

Copies available from:

Water Resources Research Institute of The University of North Carolina 124 Riddick Building North Carolina State University Raleigh, North Carolina 27607

THE UNIVERSITY OF NORTH CAROLINA WATER RESOURCES RESEARCH INSTITUTE

Office of the Director 124 Riddick Building North Carolina State University Raleigh, North Carolina, 27607 Telephone: 919:737-2815

CIRCULATING COPY Sea Grani Dopository

TO: WHOM IT MAY CONCERN

FROM: James M. Stewart Assistant Director for Research Application

SUBJECT: Institute Report No. 82 - "The Effects of Ditching on the Mosquito Populations in Some Sections of <u>Juncus</u> Salt Marsh in Carteret County, North Carolina" by Mr. Richard N. LaSalle and Dr. Kenneth L. Knight, Department of Entomology, North Carolina State University

This report presents research findings on the effectiveness of ditching for the control of mosquito populations in five areas of irregularly flooded salt marshes in Carteret County, North Carolina. The principal species of mosquitoes, their location, and the relative numbers of each are a part of the data provided. Comparisons are made for both plant cover and the abundance of mosquito larvae in ditched and unditched sections of the marsh.

Your attention is called to the summary and the recommendations sections for their implications to mosquito control programs. Information contained here should be useful to state and county health officials, County Board of Commissioners, and State regulatory agencies.

Another related study by Dr. Edward J. Kuenzler, Professor of Environmental Biology, and Mr. Howard T. Marshall, Graduate Assistant of the University of North Carolina at Chapel Hill, covers the ecological effects of mosquito control ditching, including a comprehensive description of the aquatic organisms, plant species and growth, and general vegetative cover for ditched and unditched marsh areas in Carteret County. This information is provided in Institute Report No. 81.

JMS:jj

Attachment

CIRCULATING COPY Sea Grant Depository

THE EFFECTS OF DITCHING ON THE

MOSQUITO POPULATIONS IN SOME SECTIONS

OF JUNCUS SALT MARSH IN

CARTERET COUNTY, NORTH CAROLINA

BΥ

Mr. Richard N. LaSalle Graduate Assistant

AND

Dr. Kenneth L. Knight Professor and Head Department of Entomology Agricultural Experiment Station School of Agriculture and Life Sciences North Carolina State University Raleigh, N. C. 27607

The work upon which this publication is based was supported in part by funds provided by the Office of Water Resources Research, Department of the Interior, through the Water Resources Research Institute of the University of North Carolina as authorized under the Water Resources Research Act of 1964, and in part by the Agricultural Experiment Station, North Carolina State University, Raleigh. Support was also provided by training grant ES00069 from the National Institute of Environmental Health Sciences and by Grant No. 2-35178 from NOAA, Office of Sea Grant, Department of Commerce.

> Project No. B-027-NC Agreement No. 14-31-0001-3316, F. Y. 1973

> > June 1973

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	i
ABSTRACT	i i
LIST OF FIGURES IN TEXT	iv
LIST OF FIGURES IN APPENDIX	vīi
LIST OF TABLES IN TEXT	viii
LIST OF APPENDIX TABLES	ix
S UMMAR Y	xii
RECOMMENDATIONS	xvi
INTRODUCTION	1
EXPERIMENTAL PROCEDURE:	4
Study area	4
Larval-pupal monitoring procedure	6
Adult monitoring procedure	7
Climatological data records	7
Tide records	8
Site elevation method	8
Mean slope determination Statistical analysis to determine significant parameters for predicting relative abundance	8
of Aedes-Psorophora and Anopheles-Culex species	8
Ground water level determination	9
Vegetational survey methods	é
RESULTS:	13
Frequency, duration and extent of flooding in study	
areas	13
Plant cover summary for study areas	13
Mosquito species taken from study areas and their	
relative abundance and distribution	13
unditshed sections	14
formatison of rate of drainage between ditched and	14
unditched sections	17
Adult seasonal distribution	17
Results of statistical analysis	19
DISCUSSION AND CONCLUSIONS	23
REFERENCES CITED	31
APPENDIX	

ACKNOWLEDGMENTS

The authors wish to thank all persons who have contributed counsel and assistance during the accomplishment of this study. Appreciation is extended to Dr. A. F. Chestnut, Director of the University of North Carolina Institute of Marine Sciences, Morehead City, who provided the laboratory facilities for this research; to Mr. Howard Marshall, a graduate student enrolled in the marine science curriculum at the University of North Carolina at Chapel Hill for his help in the installation and operation of the tide gauges; to those members of the North River, Williston and Davis communities who supplied the space and electricity for the operation of light traps; to Dr. Ronald Stinner and Dr. R. R. Gerhardt for their help in the statistical analysis of the data; and to Mrs. Susanna Chang for the preparation and identification of the larval and adult mosquitoes collected from the field and for her assistance in the final preparation of the figures and tables of this text.

i

ABSTRACT

Five areas of irregularly flooded salt marsh in Carteret County, North Carolina were studied to determine the effects of ditching on mosquito populations inhabiting the areas. The principal species of mosquitoes present were <u>Anopheles atropos</u> Dyar and Knab, <u>Anopheles</u> <u>bradleyi</u> King, <u>Aedes sollicitans</u> (Walker) and <u>Aedes taeniorhynchus</u> (Weidemann). Present in lesser numbers were <u>Culex salinarius</u> Coquillett and <u>Psorophora confinnis</u> (Lynch Arribalzaga).

Data on both plant cover and on the abundance of mosquito larvae of each species showed such wide variation in both ditched and unditched sections that no significant differences between sections could be detected. However, data from weekly field observations of mosquito breeding sites and ground water levels showed that ditched sections had shorter wet intervals than unditched sections. Despite this reduction, the potential survival of the mosquitoes did not significantly differ from the unditched sections, since, according to tide gauge data the ditched sections, on the average, were completely flooded from 14 to 21 times per month, producing conditions in which the wet intervals were often long enough for mosquitoes to complete their development. On the other hand, this high frequency of flooding created microenvironments in some sections on the marsh incompatible with heavy larval breeding.

<u>Aedes</u> and <u>Psorophora</u> larvae were more commonly collected from sites marginal to the marsh, whereas those of <u>Anopheles</u> and <u>Culex</u> were found to be more evenly distributed throughout the study areas.

ii

In general, the percentage of <u>Aedes</u> and <u>Psorophora</u> larvae taken in samples (i.e. their relative abundance) tended to be directly proportional to the mean slope of the breeding depression and inversely proportional to its frequency of flooding. Conversely, the relative abundance of <u>Anopheles</u> and <u>Culex</u> species, although not as highly affected by the mean slope as <u>Aedes</u> and <u>Psorophora</u>, was, up to a point, directly proportional to the frequency of flooding. According to statistical analysis, the relative abundance of species in the ditched sites was more affected by the mean slope, frequency of flooding and the ratio of frequency of flooding/mean slope (Suitability Index) than in the unditched sites, where the additive effect of the frequency of standing water, the number of days per wet period and the Suitability Index were found to be more significant.

Light trap and biting count data collected for the principal salt marsh species showed that the <u>Anopheles</u> and, at times, <u>Culex</u> species could be as numerous and annoying as the <u>Aedes</u> and <u>Psorophora</u> species.

iv

.....

LIST OF FIGURES IN TEXT

		Page
۱.	Area of North Carolina where study was conducted	33
2.	Location of study areas within Carteret County	34
3.	North River study area (site location)	35
4.	Davis study area (site location)	36
5.	King's Point study area (site location)	37
6.	Ward's Creek study area (site location)	38
7.	Newport River study area (site location)	39
8.	North River study area, <u>Aedes</u> breeding sites and numbers of specimens.	40
9.	North River study area, <u>Anopheles</u> breeding sites and numbers of specimens	41
10.	King's Point study area, <u>Aedes</u> and <u>Anopheles</u> breeding sites and numbers of specimens	42
Π.	Davis study area, <u>Aedes</u> and <u>Anopheles</u> breeding sites and numbers of sepcimens	43
12,	Newport River study area, <u>Aedes</u> and <u>Anopheles</u> breeding sites and numbers of septimens	44
13.	A comparison of the total number of larvae taken per week between ditched and unditched sections at North River, (1971)	45
14,	A comparison of the total number of larvae taken per week between the ditched section at Davis and the unditched section at King's Point,(1972)	46
15.	The total number of larvae taken per week at Ward's Creek, (1971)	47
16.	A comparison of the total number of larvae taken per week between ditched and unditched sections at Newport River, (1972)	48
17.	Total number of adult mosquitoes taken per month at the North River light trap (1970)	49

18.	Total number of adult mosquitoes taken per month at the Williston light trap (1970)	50
19.	Accumulative data for the interval March 1st - August 17, 1971 North River, Carteret County, N. C. (Light trap and biting activity on weekly basis for <u>Anopheles</u> and <u>Aedes</u>)	51
20.	Total number of <u>Culex salinarius</u> and <u>Psorophora confinnis</u> adults taken biting per 30-minute interval per week at North River, (1971)	52
21.	Total number of adult mosquitoes taken per month at the North River light trap (1971)	53
22.	Total number of adult mosquitoes taken per month during biting counts at North River (1971)	54
23.	Accumulative data for the interval March 1st - August 17, 1971, Williston (Light trap activity on weekly basis for Anopheles, Aedes, Culex salinarius and Psorophora confinnis)	55
24.	Total number of adult mosquitoes taken per month at Williston light trap (1971)	56
25.	Accumulative data for the interval March 1st - October 31, 1972 at Atlantic Beach. (Light trap activity on weekly basis for <u>Anopheles</u> and <u>Aedes</u>)	57
26.	Total number of adult mosquitoes taken per month at the Atlantic Beach light trap (1972)	58
27-2	9. Accumulative data for the interval March 1st - October 31, 1972 at Davis. (Light trap and biting activity on weekly basis for <u>Anopheles</u> and <u>Aedes</u> , and light trap activity on weekly basis for <u>Culex salinarius</u>)	59
30.	Total number of adult mosquitoes taken per month at the Davis light trap (1972)	62
31.	Total number of adult mosquitoes taken per month during biting counts at Davis (1972)	63
32.	Accumulative data for the interval March 1st - October 31, 1972 at Newport River. (Light trap and biting activity on weekly basis for <u>Anopheles</u> and <u>Culex</u>)	64
33.	Total number of adult mosquitoes taken per month at the Newport River light trap (1972)	65

v

Page	
------	--

34.	Total number of adult mosquitoes taken per month during biting counts at Newport River (1972)	66
35.	Effect of ditching on ground water levels at North River .	67
36.	Response of <u>Anopheles</u> and <u>Culex</u> species to frequency of flooding at 5 mean slope (MS) values (ditched sites)	68
37.	Response of <u>Anopheles</u> and <u>Culex</u> species to frequency of flooding at 8 mean slope (MS) values (ditched sites)	69
38.	Response of <u>Aedes</u> and <u>Psorophora</u> species to frequency of flooding at 5 mean slope (MS) values (ditched sites)	70
3 9.	Response of <u>Aedes</u> and <u>Psorophora</u> species to frequency of flooding at 8 mean slope (MS) values (ditched sites)	71
40.	Response of <u>Anopheles</u> and <u>Culex</u> species to mean slope at 7 frequency of flooding (FF) values (ditched sites)	72
41,	Response of <u>Aedes</u> and <u>Psorophora</u> species to mean slope at 7 frequency of flooding (FF) values (ditched sites)	73
42.	Response of <u>Anopheles</u> and <u>Culex</u> to number of days per wet period at a frequency of standing water of 70% and at 3 S.I. values (unditched sites)	74
43.	Response of <u>Aedes</u> and <u>Psorophora</u> to number of days per wet period at a frequency of standing water of 70% and at 3 S.I. values (unditched sites)	75
44.	Response of <u>Anopheles</u> and <u>Culex</u> to number of days per wet period at a frequency of standing water of 90% and at 3 S.I. values (unditched sites)	76
45.	Response of <u>Aedes</u> and <u>Psorophora</u> to number of days per wet period at a frequency of standing water of 90% and at 3 S.I. values (unditched sites)	77

vii

LIST OF FIGURES IN APPENDIX

Page

1.	<u>Baccharis</u> <u>halimifolia</u> (Linnaeus)	151
2,	<u>Borrichia frutescens</u> (Linnaeus)	152
3.	<u>Cladium jamaicense</u> Crantz	153
4.	<u>Distichlis</u> <u>spicata</u> (Linnaeus)	154
5.	<u>lva imbricata</u> Walter	155
6,	<u>Juncus roemerianus</u> (Scheele)	156
7.	<u>Myrica cerifera</u> Linnaeus	157
8.	<u>Pinus taeda</u> (Linnaeus)	158
9.	<u>Salicornia virginica</u> Linnaeus	159
10.	<u>Scirpus robustus</u> Pursh	160
Π.	<u>Spartina</u> <u>alterniflora</u> Loisel	161
12.	<u>Spartina patens</u> (Aiton)	162

viii

LIST OF TABLES IN TEXT

Page

1,	Data on frequency, duration and extent of flooding of study areas	78
2.	Plant cover summary for breeding sites of ditched and unditched sections of study areas (in percentage)	79
3.	Abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> in ditched and unditched sections of study areas	80
4.	Abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> species in ditched and unditched sections of study areas	81
5.	Abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> species in sites of ditched and unditched sections of study areas , , .	82
6.	Survival summary for species breeding in ditched and un- ditched sections of study areas,	83
7.	Ground water levels for North River study area	84
8.	Ground water levels for Davis study area	85
9.	Ground water levels for Newport River study area	86
10.	Significant parameters for unditched sites and results of statistical analysis	87
11.	Significant parameters for ditched sites and results of statistical analysis	88

ix

LIST OF APPENDIX TABLES

		Page
1.	Data on the physical characteristics, frequency, duration and extent of flooding of Ward's Creek and North River study sites, 1971	90
2.	Data on the physical characteristics, frequency, duration and extent of flooding at Davis study sites, 1972	92
3.	Data on the physical characteristics, frequency, duration and extent of flooding at King's Point study sites, 1972	93
4,	Data on the physical characteristics, frequency, duration and extent of flooding at Newport River study sites, 1972	94
5.	Plant cover summary for Ward's Creek and North River study sites, 1971	95
6.	Plant cover summary for Davis study sites, 1972	97
7.	Plant cover summary for King's Point study sites, 1972	98
8.	Plant cover summary for Newport River study sites, 1972	99
9.	Abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> species at Ward's Creek and North River sites, 1971	100
10.	Abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> species at Davis study sites, 1972	102
11.	Abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> species at King's Point study sites, 1972	104
12.	Abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> species at Newport River	106
13.	Total number of larvae taken per weekly interval from the North River unditched study sites, 1971	108
14.	Total number of larvae taken per weekly interval from the North River ditched study sites, 1971	110
15.	Total number of larvae taken per weekly interval from the King's Point unditched study sites, 1971	112
16,	Total number of larvae taken per weekly interval from the Davis ditched study sites, 1972	114

17,	Total number of larvae taken per weekly interval from the Newport River study sites, 1972	<u>116</u>
18.	Survival summary for species taken from Ward's Creek and North River study sites, 1971	118
19.	Survival summary for species taken from the Davis study sites, 1972	120
20.	Survival summary for species taken from the King's Point study sites, 1972	121
21.	Survival summary for species taken from the Newport River study sites, 1972	122
22.	Mean number of adults taken per light trap night per weekly interval at the North River light trap, 1970	123
23.	Total number of adults taken per month from the North River light trap, 1970	124
24.	Mean number of adults taken per light trap night per week at the North River light trap, 1971	125
25.	Total number of adult mosquitoes taken per month from the North River light trap, 1971	126
26.	Total number of adult mosquitoes taken biting per 30-minute interval at North River study area, 1971	127
27.	Total number of adult mosquitoes taken per month during biting counts at North River, 1971	128
28,	Mean number of adult mosquitoes taken per light trap night per week at the Williston light trap, 1970	129
29.	Total number of adult mosquitoes taken per month at the Williston light trap, 1970	130
30.	Mean number of adults mosquitoes taken per light trap night per week at the Williston light trap, 1971	131
31.	Total number of adult mosquitoes taken per month from Williston light trap, 1971	132
32.	Mean number of adult mosquitoes taken per light trap night per week at the Davis light trap, 1972	133

Page

33.	Total number of adult mosquitoes taken per month at the Davis light trap, 1972	135
34.	Total number of adult mosquitoes taken per 30-minute interval during biting counts at Davis, 1972	136
35.	Total number of adult mosquitoes taken per month during biting counts at Davis, 1972	138
36.	Mean number of adult mosquitoes taken per light trap night per week from the Newport River light trap, 1972	139
37.	Total number of adult mosquitoes taken per month from the Newport River light trap, 1972	141
3 8.	Total number of adult mosquitoes taken per 30-minute interval during biting counts at Newport River, 1972	142
39.	Total number of adult mosquitoes taken per month during biting counts at Newport River, 1972	143
40.	Mean number of adult mosquitoes taken per light trap night per week at Atlantic Beach, N.C., 1972	144
41.	Total number of adult mosquitoes taken per month at the Atlantic Beach light trap, 1972	146
42.	Predicted % relative abundance for <u>Anopheles-Culex</u> and <u>Aedes-Psorophora</u> species at selected MS, FF and S.I. values (ditched sites)	147
43.	Predicted % relative abundance for <u>Anopheles-Culex</u> and <u>Aedes-Psorophora</u> species at selected FOSW, NWET and S.I. values (unditched sites)	14.0
44.	Incidence of crabhole breeding at North River study sites	149 150

Page

SUMMARY

Approximately 60,000 acres of the coastal wetlands of North Carolina are regularly flooded and do not produce mosquitoes. However, another 100,000 acres, dominated by the black needle rush (<u>Juncus roemerianus</u>), are irregularly flooded by tidal waters and are capable of producing important man-annoying species of mosquitoes. Since 1960, a ditching program designed to reduce mosquito production, has been carried out on these irregularly flooded marshes. The present study was conducted to determine the effectiveness of this control effort and to provide guidance for its improvement.

Five areas of irregularly flooded salt marsh in Carteret County, North Carolina were utilized for the study. Since before and after ditching evaluations were not possible, comparisons were made on adjoining tracts of ditched and unditched marshes.

The principal species of mosquitoes present were <u>Anopheles</u> <u>atropos</u>, <u>Anopheles bradleyi</u>, <u>Aedes sollicitans</u> and <u>Aedes taeniorhynchus</u>. Present in lesser numbers were <u>Culex salinarius</u> and <u>Psorophora</u> <u>confinnis</u>. Although all of these are coastal pest mosquitoes, the two <u>Aedes</u> species constitute the principal problem, since they are capable both of occurring in tremendous numbers and of dispersing many miles from their breeding sites. The <u>Anopheles</u> and <u>Culex</u> species are produced in lesser numbers and are only locally annoying. <u>Psorophora</u> have habits and capabilities similar to

xH

<u>Aedes</u> but fortunately, since they are principally fresh water breeders, are not that abundant in our coastal areas.

Necessary to an understanding of the mosquito-breeding potential of marshlands, is the knowledge that <u>Anopheles</u> and <u>Culex</u> mosquitoes are permanent pool breeders and are more consistent and numerous in their presence when there is an extended availability of water. Conversely, <u>Aedes</u> and <u>Psorophora</u> are produced only in temporary or intermittent pools since their eggs are laid on wet soil and must undergo a dry period and a subsequent flooding before they will hatch.

Based upon the diverse marsh areas studied, the research reported on here disclosed that the <u>Juncus</u> marshes in Carteret County were subject to a high rate of tidal flooding for most of the mosquito breeding season, which presumably accounts for the relatively low level of <u>Aedes</u> breeding found to occur. This would also account for the finding that the permanent pool breeders, <u>Anopheles-Culex</u>, were as abundant or more so than the <u>Aedes</u>. The relatively high abundance of <u>Anopheles-Culex</u> mosquitoes collected was further demonstrated by the light-trap and biting-count data for the study areas.

Concerning the question of whether ditching controlled mosquito breeding in the <u>Juncus</u> marshes of Carteret County, even though ditched sections of the study areas generally had shorter wet periods than the unditched sections, these periods were usually not of sufficient brevity to prevent a significant number of larvae from

xIII

completing development. An additional contributing factor was the frequent replenishment of water because of the high flooding frequency which occurred. Also contributing to mosquito survival was the finding that crabholes serve as water-holding refuges for the larvae, enabling them to complete development even if the breeding depression itself became dry.

If, as was the case in this study, field observations show that most sections of the marshes surveyed were flooded at a frequency sufficiently high to preclude the production of serious numbers of <u>Aedes-Psorophora</u> mosquitoes, an area-wide gridded pattern of ditching is not advised. Since our work showed that prolific breeding of <u>Aedes-Psorophora</u> species was confined to the less frequently flooded upper marginal areas of the marsh, any ditching done for their control should be concentrated in that section. The relatively unproductive outer <u>Juncus</u> marshes can in most cases be bypassed.

Where control of <u>Anopheles-Culex</u> mosquitoes is considered necessary (because of closely adjacent human concentrations), a 150-200 foot grid ditching pattern will not significantly reduce the populations of these species. The only potentially adequate method for their control known to us at present is the use of appropriately-managed impoundments.

In view of the finding that large areas of <u>Juncus</u> marsh can exist in a natural condition without producing significant numbers of <u>Aedes</u>, the importance of conducting intensive season-long

xiv

surveys in salt marshes to accurately determine mosquito productivity cannot be over emphasized. Unfortunately, however, surveys may be neglected because of the apparent magnitude of the task. In cases such as these, a method enabling one to predict the relative abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> breeding in salt marshes, using only a few key factors, would be most helpful.

Observations and measurements made during the study disclosed that significant correlation existed between the relative abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> and the slope and frequency of flooding of the breeding depression. A statistical study of the data collected showed that the relative abundance of <u>Aedes-</u> <u>Psorophora</u> tended to be directly proportional to the mean slope of the site and inversely proportional to its frequency of flooding. Conversely, the relative abundance of <u>Aedes-Culex</u> larvae, although not as highly affected by the mean slope as <u>Aedes-Psorophora</u>, was, up to a point, directly proportional to the frequency of flooding. Preliminary procedures and predictive tables for using this relationship in larval breeding surveys were developed.

xv

RECOMMENDATIONS

- 1. To accomplish the most effective source reduction of salt marsh mosquitoes with the least disturbance to the marsh ecosystem, habitat modification procedures such as ditching should be attempted only after intensive season-long larval surveys have been made. The survey program should include some or all of the following procedures;
 - a. Areas subject to flooding should be delineated and then visited at such intervals as required to locate
 all specific breeding sites occurring within each area.
 - b. Once located, each site should be examined frequently during at least one entire season to determine its full mosquito breeding potential.
 - c. The burden of this initial survey work can be considerably lightened by installing tide gauges at strategic points in the survey areas to determine the frequency of flooding. This information will help to eliminate from serious consideration those sections flooding too frequently to be a serious source of mosquito breeding. Additionally, data from tide gauge readings can be used as a basis for predicting the relative abundance of the mosquito species breeding on the marsh. With such information, it could develop that under certain conditions,

xvi

control of one or more species present may not be necessary.

- d. Marsh levels along random transects from the tide gauges to high ground should be determined. Combining marsh elevations with tide gauge data makes it possible to estimate the duration and extent of flooding for each breeding site.
- e. Assessment of adult mosquito populations by light trap or other means must be carried out on a regular basis in and adjacent to areas under survey. Additionally, biting and/or landing counts should also regularly be taken to assess the nuisance value of the mosquito species present.
- 2. If survey and larval-pupal monitoring data show a definite need for mosquito control in a particular area and ditching is decided upon, then extensive testing should first be undertaken to determine the porosity and drainage potential of the soil.
- 3. If ditching is to be done, care should be taken to tailor the ditching design to local conditions in such a manner as to obtain maximum control of mosquito breeding with minimum disturbance to the marsh ecosystem.

xvii

INTRODUCTION

About one-half of the 200,000 acres of coastal wetlands in North Carolina consists of irregularly flooded salt marsh dominated by the plant species <u>Juncus roemerianus</u> Scheele (black needle rush). <u>Juncus</u> marshes occur primarily north and east of Beaufort in Carteret, Pamlico, Hyde and Dare counties, as well as along the outer banks (Adams 1967). Six species of mosquitoes breed in these areas of salt marsh.

In the mid-fifties a series of hurricanes hit the North Carolina coast and the accompanying high tides and rain caused the production of intolerable numbers of mosquitoes. This led to the establishment of the North Carolina Salt Marsh Mosquito Study Commission (White 1956). The purpose of this Commission was to assess the mosquito problems in eastern North Carolina and to suggest means for alleviating them. One result of the work done by the Commission was the initiation in 1960 by the North Carolina State Board of Health of a salt marsh ditching program for mosquito control. To date, areas in Carteret, Craven, Dare, Onslow and Pamlico counties have been ditched. As a result, at least 30% of all irregularly flooded salt marsh in the State has now been altered for mosquito control (Adams 1967).

In this work a dragline was used to excavate a pattern of parallel ditches approximately 100-400 feet apart, 3 feet in depth and 8-10 feet in width through tracts of <u>Juncus</u> marsh. Beginning in tidal water, the ditches usually ended at the wooded high ground marginal to the marsh and were connected to perimeter ditches parallel to the high ground. In recent years, growing concern for the welfare of coastal wetlands has caused a questioning of the effects of such ditching on marsh and estuarine ecosystems. To provide some information on this subject in North Carolina, a cooperative research program was conducted during the years 1970, 1971 and 1972 by personnel of the University of North Carolina at Chapel Hill and North Carolina State University at Raleigh. Consisting of two phases, the first was an evaluation of the effects of the mosquito control ditching on the marsh ecosystem itself and the second a determination of the effectiveness of the ditching in controlling mosquito populations. The results of the first phase have been published by Kuenzler and Marshall (1973). Phase 2 is reported on here.

Following the publication of a comprehensive report by Smith (1904) advocating filling and drainage as the most satisfactory methods of eliminating salt marsh mosquito breeding, extensive uses of these practices developed in several coastal states and continue to the present. For evaluative information on salt marsh ditching, see MacCreary and Stearns (1935), Richards (1938), Reiley (1951), Carmichael (1957), Smith (1962) and Helm, et al (1963). However, no previous reports have been published dealing with ditching for mosquito control in marshes similar to those which occur in North Carolina.

Specific objectives of this study included determining the temporal and spatial distribution of each mosquito species breeding on ditched and unditched sections of <u>Juncus</u> marsh and the correlating to each breeding site of such factors as frequency of flooding, mean de-

pression slope, plant cover, and distance from ditches and maximum high tide level.

EXPERIMENTAL PROCEDURE

This research project was conducted in five areas of irregularly flooded salt marsh located in Carteret County, N. C. (fig. 1, p. 33). These areas were specifically located at : North River, 5 miles north of Beaufort; Ward's Creedk, about 1 mile east of Bettie; Davis; King's Point, I mile north of Davis; and Newport River near Morehead City (fig. 2, p. 34).

The North River and Newport River study areas were selected principally because each had a ditched section of marsh adjacent to an unditched section. In the case of the Davis study area, which was entirely ditched, King's Point was selected to represent the nearest appropriate tract of unditched marsh. The Ward's Creek area was an additional unditched area, selected because of its known high mosquito breeding potential. These areas were also selected because they represented differing types of salt marsh conditions. This was of importance if a worthwhile evaluation was to be made of the usefulness of ditching as a method of mosquito control.

The vegetation of all study areas except Ward's Creek was predominantly <u>Juncus</u> <u>roemerianus</u>, interspersed with large patches of <u>Distichlis spicata</u> (Linnaeus) and <u>Spartina patens</u> (Aiton). The Ward's Creek area was predominantly covered with <u>D</u>. <u>spicata</u>, with scattered stands of <u>J</u>. <u>roemerianus</u> and <u>Scirpus robustus</u> Pursh. The Newport River area was also distinctive in having a rather high percentage of short <u>Spartina alterniflora</u> Loisel.

In order to compare the mosquito populations occurring in ditched

and unditched areas, an extensive larval-pupal monitoring routine was established. Collections were made at the North River and Ward's Creek areas from March 1st to August 17, 1971, and at Davis, King's Point and Newport River from March 1st to September 30, 1972.

The study areas were surveyed on foot for breeding. A representative number of the sites found were numbered and marked with a 3-foot stake. Additionally, the maximum area of each was determined. Each site's precise location was determined by measuring to it from the nearest ditch. These locations are represented by an encircled "X" in the study area drawings reproduced in figures 3, 4, 5, 6 and 7, pages 35-39. For monitoring purposes each site was visited 2 to 4 times a week. At each visit, the mean water depth was determined and a breeding index was calculated. These data served as a basis for comparing the frequency of standing water and numbers of mosquitoes produced in ditched and unditched sites.

The North River study area contained 41 of these marked breeding sites, all occurring in an area of about 50 acres. Of this number, 26 were located in the unditched section (numbers 16, 18-42, see fig. 3), and 15 in the ditched section (numbers 2-15 and 17, see fig.3). Another 50 sites occurring in a contiguous unditched area were visited at least once a week to obtain a general impression of the mosquito breeding occurring over a wider area. The ditched portion was crossed by a series of straight parallel ditches, excavated in 1968, which extended from the wooded high ground across the marsh to the river. These ditches were approximately 150 feet apart.

The Davis study area contained 26 marked sites occurring in an area of about 50 acres. Of this number, 23 were located in the ditched section (see fig. 4, p. 36). The remaining 3 sites (Sites A, B and C in fig. 4) were located in the pine woods and were considered unditched. These sites were routinely checked for larvae and pupae in order to compare their mosquito productivity with that of the outer marsh. The ditches in this area, which were excavated in 1965, were approximately 200 feet apart.

The King's Point area contained 21 unditched sites occurring in an area of 50 acres. Twenty of these sites were arranged along two transects beginning at the same point 500 feet from Route 70 and diverging across the marsh to Core Sound. One transect ended at a tide gauge, the other at a berm area (see fig. 5).

The one remaining site, number 21, was located in brushy high ground near the highway. The transect method was used in this case principally as a convenient sampling procedure to locate sites at various distances from maximum high tide.

The two remaining study areas were Ward's Creek, an unditched site of approximately 600 square feet adjacent to Core Sound (see fig. 6), and the Newport River Study area located near Morehead City. The latter study area contained 13 sites, all occurring in a ditched section of marsh about 10 acres, and 1 large unditched site (site 10) of about 1 acre (see fig. 7).

Larval-pupal numbers were determined at the study sites by means of the sampling procedure reported by Belkin (1954). Representative

samples of the larvae and pupae collected at each site during this sampling procedure were brought into the laboratory. Most of the specimens were killed in boiling water and preserved in 80% alcohol for subsequent identification. The remainder were held alive in the laboratory at room temperature and allowed to complete development. If the collection sites did not dry up before the most immature of the larvae completed development, it was assumed that emergence could have occurred in the field. This information is the basis for the survival percentages given later in this report. As a further measure of mosquito population, standard New Jersey light traps were operated and biting catches (for explanation see below) were made adjacent to the study areas. This latter procedure helped assess the pest potential of the species coming from the marsh.

Two light traps were in operation in 1970 and 1971, one at Williston 19 miles east of Beaufort, and one at North River. Three traps were in operation during the 1972 season, one each at Atlantic Beach, Newport River and Davis. Each light trap operated from 7 p.m. to 7 a.m. and the collections were picked up at least 3 times a week.

Biting catches were taken twice a week at North River from June 1 to August 17, 1971, and at Davis and Newport River from June 1 to September 30, 1972. The adults were collected off the arms and legs of the author by means of an aspirator tube. Twenty-minute catches were made every half hour from sunset to at least 10 p.m..

The temperature and rainfall data needed for this research was obtained from <u>Climatological Data</u>, published by the U.S. Department

of Commerce. Stations at Morehead City and Cedar Island were used as representative of the study areas.

In the belief that the interaction of mean slope and the mean frequency, duration and extent of flooding of breeding depressions has an influence on species composition and abundance, appropriate measurements were made at each site.

The mean frequency of flooding on the marsh was determined by a series of Leupold-Stevens Type-F tide gauge recorders which were set up, one each, at North River, Davis, King's Point and Newport River. To facilitate the collection of data on flooding frequency at the sites, site levels within study areas were determined by use of a surveyor's transit.

Estimation of mean slope was made by determining the deepest point at each site and the average distance from this point to the edge of the depression or to vegetation surrounding the water in depressions with little slope.

In order to determine the significance and usefulness of the mean frequency, duration and extent of flooding and the mean slope values for predicting the relative percentages of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> breeding on a salt marsh, all data collected during the study were analyzed by multiple regression, using a standard statistical program (Barr and Goodnight 1971) on the Research Triangle IBM 360/165 computer. The arcsin transformation was used on the dependent variable (<u>Aedes-Psorophora</u>) to stabilize the variance. Tables 10 and 11 contain all parameters (independent

variables) used in the analysis and in the final regression model. These variables were selected because it is believed that their relationships, according to field observations and information already available, are non-linear, that is their interactions produce optimum conditions for both <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> breeding. Above and below this optimum the percent relative abundance for the species decrease.

In order to determine and compare ground water levels and rate of subsurface drainage on ditched and unditched portions of the study areas, 14 series of holes, 36 inches deep by 6 inches wide, were dug at the North River, Davis, and Newport River Study areas. Water levels in these holes were checked during each area visit by means of a graduated dipstick and expressed in inches from the surface. The first hole of each series was excavated approximately 3 feet from a ditch, with subsequent holes being located at 20 foot intervals along a line perpendicular to the ditch. In some cases, these lines were between two ditches and in others they extended from a ditch into an adjacent unditched control area.

A survey of vegetation was made at each breeding site in an attempt to correlate the plant cover with the numbers and kinds of mosquitoes present. At each site the number of square feet occupied by each plant species in a 100 square foot plot was estimated. In the case of mixed stands, 10 samples were selected at random from each stand and the ratio of the mean number of stems of each plant species to the total number in the 10 samples, was determined.

The following is an explanation of the various types of values given in the text, tables and graphs.

Mean frequency of flooding/month at tide gauge.

This was determined by dividing the total number of floodings for an area by the number of months the tide gauge was in operation, Mean frequency of flooding/month at each site,

Since the floodings at the tide gauge did not necessarily mean that sites located at various distances from the gauge were also flooded, a separate determination of the frequency of flooding/month was obtained for each site. A surveyor's transit was used to determine the site's height in relation to the tide gauge. The number of times the tide reached higher than the height of the site was divided by the number of months the tide gauge was in operation.

Frequency of standing water/site (FOSW).

Determined by dividing the number of days when water was present at each site by the number of days during the research interval.

Mean frequency of standing water/area.

Determined by totalling up all frequency of standing water values for the sites of an area and dividing by the number of sites in the area,

Suitability Index (S |).

Determined by dividing the frequency of flooding of a site by its mean slope. It is a measure of the amount of soil exposure made available during the mosquito breeding season for the deposition of <u>Aedes</u> and <u>Psorophora</u> eggs. An inverse relationship exists here. Higher

suitability indices represent smaller amounts of soil exposure.

Breeding index.

This value was determined by the method and formula developed by Belkin (1954), where Breeding Index (B.I.) = $\frac{SA \times PD \times TLP}{ND \times ND \times 10}$

- SA = Surface area of body of water serving as effective
 breeding site in square feet.
- PD = Positive dips obtained (those dips in which mosquito larvae and pupae are found).
- TLP = Total number of larvae and pupae obtained.
- ND = Total number of dips taken, disregarding all

negative dips prior to the first positive dip.

Mean number of specimens taken/site.

Determined by dividing the total number of mosquito larvae and pupae from each separate ditched and unditched area by the number of sites in each area.

Percent specimens taken/area.

Determined by dividing the number of specimens taken from each separate ditched and unditched area by the total taken from the combined ditched and unditched areas.

Percent relative abundance of species/site.

Determined by dividing the number of specimens of each species identified from a site by the total number of specimens identified from that site. Mean percent relative abundance of species/site for ditched and unditched sections.

Determined by totalling up the percent relative abundance values for all sites of ditched and unditched areas separately and dividing by the number of sites in each section.

Percent relative abundance of species for ditched and unditched sections.

Determined by dividing the number of specimens of a particular species taken from the ditched and unditched sections separately by the total number of specimens of that species taken from the entire study area.

Percent survival.

Determined by dividing the number of larvae estimated to have survived (see procedure p. 7) in each site by the total number collected at each site.

Mean number of mosquitoes taken per light trap night.

Determined by dividing the total number of specimens taken/week by the number of nights the light trap was in operation that week. <u>Mean number of mosquitoes taken biting per 30-minute interval.</u>

Determined by dividing the total number of specimens taken each night in biting counts by the number of 30-minute intervals in each collecting period.

RESULTS

Data on the frequency, duration and extent of flooding for the study areas (summarized in table 1, p. 78, detailed in appendix tables 1-4, pages 90-94) demonstrate the variability which occurred between the areas. North River and Ward's Creek were similar in averaging 15 floodings per month at the tide gauge, whereas the other study areas averaged from 24-30 floodings. This probably indicates that the former two areas are at higher elevations than the latter three.

These data also show that, as compared with the unditched areas, the ditched areas all had a reduced frequency of standing water, an equal or slightly higher number of wet intervals of shorter duration and a higher number of dry intervals of longer duration.

The vegetation of marsh breeding sites consisted primarily of varying proportions of <u>Juncus roemerianus</u>, <u>Distichlis spicata</u> and <u>Spartina patens</u> (table 2, p. 79, appendix tables 5-8, pages 95-99, and appendix figures 6, 4 and 12). Rather wide variation in the relative abundance of these plant species was found to occur between ditched and unditched areas. Unfortunately, the significance of this variation is unclear because plant surveys are not available for the areas prior to ditching. However, it does seem safe to conclude that there has been a significant invasion of <u>Baccharis halimifolia</u> into the ditched sections of the study areas.

Mosquito populations found occurring in marsh breeding sites

consisted principally of <u>Aedes sollicitans</u>, <u>A. taeniorhynchus</u>, <u>Anopheles atropos</u> and <u>An</u>. <u>bradleyi</u>. Additionally, small numbers of <u>Culex salinar-ius</u> were taken from time to time. <u>Aedes atlanticus</u> and <u>Psorophora confinnis</u> were found breeding in wooded sites around the marsh. The relative abundance of the larvae and pupae of these species for each study area is summarized in table 3, p. 80, detailed in appendix tables 9-12, pages 100-106. Rather wide variations between populations within a species was found to occur between sites of ditched and unditched sections. As with plant cover, the significance of this variation cannot be determined because surveys for larvae were not made prior to ditching.

Despite this variation, when relative species abundance is compared between ditched and unditched sections rather than just between sites, it becomes apparent that a higher percentage of combinations of <u>Aedes sollicitans</u> and <u>A. taeniorhynchus</u> occurred on ditched rather than unditched areas. These two species, as well as <u>Psorophora</u> <u>confinnis</u>, deposit their eggs on drying soil and are considered temporary pool breeders.

Another generalization that can be developed from the data collected is that the larvae of the temporary pool breeders were more often collected from marsh sites situated in or near high ground than in the marsh proper (for example, see figs. 8, 9, 10 and 11, pages 40-43). In contrast, the permanent pool breeders were more evenly distributed over the marsh.
<u>Aedes</u> and <u>Psorophora</u> species were more commonly collected during the months of June, July and August. However, a few major peaks of abundance occurred at the North River and Ward's Creek study areas during the months of March and April (see fig. 13-16, pages 45-48). Although not occurring to any marked degree during the study period itself, peaks of abundance for these species can also occur in September and even into early October.

Within the above time scale, larvae and pupae of these species were most abundant during the few instances when dry periods were followed by heavy rains and/or excessive tidal floodings (see fig. 13-16). During 1971, these periods occurred during the weeks of April 8, June 3 and July 29. In 1972, they occurred in the weeks of April 29 and July 15. Because of this marked response of <u>Aedes</u> and <u>Psorophora</u> to alternate dry-wet intervals, their seasonal distribution pattern was characterized by a number of sharp transient peaks of larval activity (see figs. 13-15).

In contrast to the above, <u>Anopheles</u> and <u>Culex</u> larvae were more consistently present, producing in some instances a long term buildup in numbers (figs, 13 and 14). This is due to the continuous development which occurs in these species and to the high frequency of tidal flooding in the areas under study. The seasonal distribution pattern alluded to above for <u>Aedes</u> and <u>Psorophora</u> differs from that of <u>Anopheles</u> and <u>Culex</u> species because the eggs of the former must undergo alternate periods of drying and flooding before they will hatch.

Using larval abundance data from unditched marsh as a check, the ditched marsh at North River and Davis supported lower populations of Anopheles and Culex (figs. 13 and 14; appendix tables 9-17, pages 100-116), but ditching did not markedly affect the population numbers of Aedes and Psorophora. However, at Newport River, as seen in figure 16, the population levels for all species were higher in the ditched section than in the unditched section because of the presence of two comparatively productive mosquito breeding sites, sites 3 and 8 (see fig. 12, p. 44). Together they yielded 583 mosquito larvae. This represented 83% of all larvae taken from the ditched section. Considered separately, site 8 yielded only Aedes and Psorophora larvae, all species of which, except for <u>Aedes</u> taeniorhynchus, had high survival values, ranging from 73% for Aedes sollicitans to 100% for Psorophora confinnis. In contrast, about 70% of all larvae taken from site 3 were Anopheles. Survival values for this site ranged from 66% for A. taeniorhynchus to 100% for Culex salinarius. Although the average distance of these sites from the nearest ditch was only 60 feet, both had high water availability values, ranging from 61% at site 8 to 95% at site 3. Additionally, both possessed deep pockets of water with thick clumps of Spartina alterniflora,

Although the ditched marsh at North River and Davis supported fewer <u>Anopheles</u> and <u>Culex</u> than did the unditched marsh, differences in survival values between these areas were not significant (tables 3 and 6, p. 80,83 and appendix tables 18-21, pages 118-122). Based

Sp. patens, and Distichlis spicata.

upon the survival data collected, at least half of the larvae could have completed development in either ditched or unditched marsh (Table 3). With the exception of <u>A</u>. <u>sollicitans</u> at North River, this was also true for the Aedes and Psorophora species (see table 3).

According to the ground water level data found in tables 8 and 9 (pages 85 and 86), the ditches at Davis and Newport River sufficiently drained most sections of salt marsh within two days. Fewer sections of North River ditched marsh were drained as fast. In this area, water usually remained on the marsh for as long as three days after the subsidence of tidal floodings (see table 7, p. 84 and fig. 35, p. 67). All control sections drained somewhat more slowly. Water in most inner ground water holes (holes 3-5 at North River and holes 6-10 at Newport River) remained at marsh level for most of the breeding season, draining only during the relatively few long periods of dryness.

Despite the adequate rate of drainage in most sections of the ditched areas, long intervals of marsh flooding by tides, occasionally combined with heavy rains, replenished breeding sites. Despite this replenishment of water, however, the sites in these areas still produced low numbers of both temporary and permanent pool breeders when compared with the Ward's Creek area, where 13,886 <u>Aedes</u> were collected (see table 3).

Additional information on the mosquito populations at the study areas, obtained from light trap and biting count data, is found in

figures 17-34 (pages 49-66) and appendix tables 22-41 (pp. 123-146)...

According to these data, Anopheles atropos and An, bradleyi combined were the most commonly collected species in light traps at North River, Williston, and Atlantic Beach and were the most commonly collected species during the biting counts at North River. The interval of highest abundance was from June through October. During this time, the number of adults taken in light traps ranged from 45 adults in August at Atlantic Beach to over 20,000 collected at North River in July. These species were most often taken biting during the months of June and July at North River when over 600 and 400 were taken respectively (see fig. 17-26 and appendix tables 22-31, 40 and 41). At Davis, the Anopheles species were among those most commonly collected from the light trap, ranging in abundance from 637 taken in June to 969 taken in September. Numbers collected during biting counts were highest in June and August when 65 and 100 adults were taken respectively (see fig. 27, 30 and 31 and appendix tables 32-35). Comparatively low numbers of these species were collected at Newport River. Light trap data for this area are not available for July and August. The highest number of adults taken biting there were in the months of June and August when only 80 and 48 were collected, respectively (see fig. 32-34 and appendix tables 36-39).

The highest numbers of <u>Culex salinarius</u> were taken in light traps during the months of June, July and August at North River, Davis, and Williston, ranging from 160 at North River in August to 594 at Williston in July (appendix tables 22-31). This species was most commonly

collected from biting counts during June and July at Newport River (1972) and North River (1971). During the former month, 80 specimens were collected at Newport River and during the latter month approximately 170 were collected at North River (see fig. 17 and 22 and 32-34, and appendix tables 32-35).

The Aedes and Psorophora species were the most commonly taken mosquitoes at Davis, and were among those most commonly taken at North River. At Davis, they ranged in abundance from 1123 taken in the light trap in June to over 2,000 collected in August (see fig. 27 and 30. and appendix tables 22-27 and 32-35), At North River their combined peak of abundance was approximately 1300 for both July and August (see fig. 17 and 21 and appendix table 22-27). Large numbers of these species were also taken in the North River light trap in September, but only the Aedes species were in any abundance in October and few of either genus were taken in November (see fig. 17 and appendix tables 22 and 23). Very few P. confinnis were taken biting, while Aedes were, in most cases, among the most commonly collected species. Comparatively high numbers of <u>Aedes</u> adults were taken biting from June through September, particularly at Davis, where they ranged from approximately 100 in June to over 500 in August (see fig. 27 and 31 and table 34 and 35).

Tables 10 and 11 give the results of the statistical analysis. The additive effect of the mean slope index, the frequency of flooding and the ratio frequency of flooding/mean slope (represented as

Suitability index (S.I.) in table 10, see also p. 10, Suitability Index) was highly significant in the ditched sections influencing considerably the relative abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> species. In the unditched sections, however, the frequency of standing water and the number of days per wet period were found to be more significant than the mean slope and frequency of flooding when combined with the Suitability Index (see table 11).

Figures 36-45 (pages 68-77) and appendix tables 42 and 43 (pages 147,149) illustrate the influence of these factors on the relative abundance of the above species in unditched and ditched sections. The corresponding S.I. values for each point on the graphs are found in appendix tables 42 and 43. These graphs describe the general trends in the changes of the relative abundance of the above species within certain limits. Naturally, for instance, when the frequency of flooding per month becomes too high, the resulting disturbance precludes the existence of mosquito larvae. Therefore, only flooding rates which produced conditions in which mosquito larvae were found, were considered.

Figures 42-45 and table 43 show the influence of the change in number of days per wet period at selected S.I. and frequency of standing water values on the relative abundance of the above species. The frequency of standing water values in the graphs were chosen because they best represented actual conditions in the unditched study sections.

At each of the standing water values, the relative abundance of <u>Anopheles</u> and <u>Culex</u> species increased as the number of days per wet

period increased. The greatest change in the relative abundance of these species, for each increase in the number of days wet, occurred at the S.I. of 1.0. Smaller changes occurred at a S.I. of 3.0 and no change occurred at a S.I. of 5.0. At the latter index, the abundance of <u>Anopheles</u> and <u>Culex</u> was 100% for the entire range of days per wet period values.

Figures 43 and 45 show the corresponding decreases in the relative abundance of the <u>Aedes</u> and <u>Psorophora</u> species under the same conditions.

Figures 36-39 show the change in the relative abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> species in ditched sections with increase in frequency of flooding at selected mean slope values. The maximum relative abundance predicted for <u>Aedes</u> and <u>Psorophora</u> occurred at sites with 1-5 floodings per month and with mean slope values ranging between .25 and .35. As the frequency of flooding increased for any given mean slope, the proportion of <u>Aedes</u> found in larval samples decreased. The rate of decrease was highest when the mean slope was .05, and more gradual when they ranged from .55 to 1.25.

Conversely, the maximum relative abundance predicted for the <u>Anopheles</u> and <u>Culex</u> species occurred in sites flooded 25 to 35 times per month and with mean slope values of .05. The relative abundance for these species increased when the frequency of flooding at any given mean slope increased. This rate of increase in relative abundance was highest in sites with mean slope values of .05. At high frequencies of flooding (i.e. 30/month or over), the relative abun-

dance decreased in sites with mean slope values ranging from .15 to .45, but increased in sites with mean slopes of .55 and over.

Figures 40 and 41 show the change in the relative abundance of the above species with increase in mean slope at selected values of frequency of flooding. The maximum relative abundance predicted for Aedes and Psorophora at any given frequency of flooding occurred in sites with mean slope values ranging between .25 and .35. The highest maximum predicted for these species was at a frequency of flooding of 5/month, and the lowest was at a frequency of flooding of 35/month. In sites where the frequency of flooding ranged from 10-35 floodings per month, the relative abundance for Aedes and Psorophora species increased rapidly as the mean slope increased from .05 to .15 and decreased gradually as the mean slopes increased beyond ,45. Change in mean slope had little or no effect on the relative abundance of these species in sites flooded 5 or less times a month. In contrast, the maximum relative abundance predicted for the Anopheles and <u>Culex</u> species at any frequency of flooding value between 10 and 35 times per month occurred in sites with mean slope values of .05 or less or 1.15 or more. Within this range of flooding, the abundance of Anopheles and Culex species dropped rapidly as the mean slope values increased from .15 to .45 and gradually increased as the mean slope values increased from .45 on. In sites where the frequency of flooding was 5 or less, the relative abundance for these species always remained very low.

DISCUSSION AND CONCLUSIONS

According to the results of this research, areas of marsh under study were subjected to a high rate of flooding for most of the mosquito breeding season. Though the frequency of flooding ranged widely between study areas, none on the average were flooded less than 14 times per month. This strongly affected the drainage performance of the ditches and the nature of the mosquito populations found in these marshes.

Although ditched sections of the study areas generally had shorter wet periods than the unditched sections, these periods were, in many cases, not short enough to prevent a significant number of larvae from completing development. In other cases, completed larval development occurred because of the relatively high flooding frequency of these areas and the consequent replenishment of water.

In some places, due to their comparatively lower elevations, and at certain times during storm and spring tides, tidal flooding was so disturbing that it prevented prolific larval breeding.

As seen in table 3, all of the study areas except Ward's Creek yielded comparatively small numbers of mosquito larvae, with <u>Ano-</u><u>pheles</u> and <u>Culex</u> often being more abundant than <u>Aedes</u> and <u>Psorophora</u>. This abundance is not so unexpected, since the former genera are permanent pool breeders and are more consistent and numerous in their presence when there is an extended availability of water. Conversely, the often lower numbers of <u>Aedes</u> and <u>Psorophora</u> taken were probably due to the relatively few long periods of soil exposure needed by

these species for oviposition and proper egg development.

The site at Ward's Creek, despite its high availability of water, yielded a large number of <u>Aedes</u> larvae. This was probably due to a high percentage of soil exposure being available because of the comparatively high mean slope value of this site. The periods of soil exposure were long enough for the accumulation and proper development of large numbers of <u>Aedes</u> eggs. Sites with lower mean slope values, had, in many cases, shorter periods of soil exposure, since in these more level areas, the loss of water was slower, keeping the soil in the site covered for a longer period of time.

The relatively high abundance of <u>Anopheles-Culex</u> species collected is further demonstrated by light trap and biting count data. These data demonstrate that, in some situations, these species can be important as pests as the <u>Aedes-Psorophora</u> species. Furthermore, their period of annoyance can be longer, since they overwinter as adults (in contrast to <u>Aedes-Psorophora</u>, which overwinter as eggs) and may become active in any period of unusually warm weather during the winter months.

Despite the fact that the coastal <u>Anopheles-Culex</u> species can create as great a nuisance as <u>Aedes-Psorophora</u> species, most control efforts are directed towards the latter genera. This is principally due to the greater numbers that can be produced of these species and because of their ability to fly great distances from where they emerged.

If light traps and biting counts show populations of mosquitoes large enough to seriously annoy residents of adjacent settled areas,

it is essential that intensive surveys be made in and around these areas to locate the most productive breeding sources before drastic control measures are begun. This work has shown that such surveys must be extended through at least one full breeding season.

An area wide gridded pattern of ditching is not advised if, as was the case in this study, field observations show that most sections of the marshes surveyed were flooded at a frequency sufficiently high to preclude the production of serious numbers of <u>Aedes-Psorophora</u> species. Since this work shows that prolific breeding of <u>Aedes-Psorophora</u> species occurs more frequently in the upper marginal areas of the marsh, any ditching done for their control should be concentrated in that section. The outer, relatively low mosquito-producing <u>Juncus</u> marshes can in most cases be bypassed.

Where control of <u>Anopheles-Culex</u> is considered necessary, field data indicate that, at least for the areas studied, a 150-200 foot grid ditching pattern will not significantly reduce the populations of these species. The only adequate method for their control known at present is the use of appropriately-managed impoundments.

The existence of sites 4 at North River, site 16 at Davis and sites 3 and 8 at Newport River, points out the fact that despite the proximity of a ditch, physical and biological characteristics such as height above sea level, depth of depression, underlying soil texture and plant cover can often help to create conditions that can maintain a substantial number of mosquito larvae. Close checks for these exceptional sites during breeding-source surveys should be made.

Another factor to be considered and watched for, and one that may influence the survival of mosquito larvae, is the incidence of crabhole breeding on the marsh. This was particularly noted at the North River study area. According to appendix table 44, 10 sites located in both ditched and unditched sections contained crabholes from which larvae and pupae were collected after all water in the sites drained off or evaporated. The presence of many pupal skins in the siphoned water from the crabholes showed that adults had emerged from these locations. Crabholes seem to serve as water-holding refuges for the mosquito larvae, enabling them to survive a few extra days during long periods of dryness, and thereby increasing their chances to complete development.

The importance of conducting intensive surveys in salt marshes to determine accurately their mosquito productivity cannot be overstated. Unfortunately, however, in some situations surveys may be neglected because of the extent of the area to be covered. In cases such as these, a method enabling one to predict the relative abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u> species in salt marshes using only a few key factors would be helpful. The results of the statistical analysis of the independent variables and their influence on the relative abundance of <u>Aedes-Psorophora</u> and <u>Anopheles-Culex</u>. species show that such a method could be developed.

According to the results of the analysis, the high frequency of standing water values (70% and over) in unditched sections seemed to mask the direct influence of the mean slope and frequency of flooding

on the relative abundance of the above species. Apparently, the degree of mean slope and change in flooding rate mattered little in situations more suitable for <u>Anopheles</u> and <u>Culex</u> species, where the frequency of standing water was generally high and where available soil exposure was normally low. Instead, the relative abundance of <u>Anopheles</u> and <u>Culex</u> was significantly affected by a change in the number of days per wet period.

According to graphs 42-45 for each frequency of standing water given, there is a fixed number of wet days that could be grouped into a number of periods of varying lengths. It was found that fewer wet intervals of longer duration made conditions more suitable for the <u>Anopheles</u> and <u>Culex</u> species, than many short wet intervals interspersed between many short dry intervals. For example, the frequency of standing water for a section of marsh was 70% for the entire breeding season (240 days). This resulted in 240 x .70 = 168 wet days and 240 - 168 = 72 dry days. Two possible combinations during the breeding season could occur: one consisting of 20 wet intervals each averaging 8.4 days in length, the other consisting of 3 wet intervals, each averaging 55 days. The latter would be much more conducive for the longer developing <u>Anopheles</u> and <u>Culex</u> species.

Another variable exerting significant influence on the relative abundance of <u>Anopheles</u> and <u>Culex</u> species was the Suitability Index (S.I.) which represented the ratio of frequency of flooding/ mean slope (see page 16). As this index increased for each of the given frequency of standing water and number of days wet values, the

relative abundance for <u>Anopheles</u> and <u>Culex</u> species increased. This was because an increase in the S.H. represented an increase in either the frequency of flooding or a decrease in the mean slope which in both cases produced conditions more suitable for <u>Anopheles</u> and <u>Culex</u> species (see graphs 42 and 44).

Conversely, since there were already enough dry periods of sufficient length in the ditched sections, (a condition more suitable for Aedes and Psorophora) due to the reduced standing water values, a change in the number of days per dry period which would vary as the number of days/wet period varied, did not seem to play as important a role in changing the relative abundance of the above species as did the mean slope and a change in the frequency of flooding caused by lunar and/or storm tides. As seen in graph 41, as the mean slope increased up to a certain value, such as .35 for a given flooding rate, the loss of water became more rapid and increased the amount of soil exposed, making conditions more suitable for Aedes and Psorophora and increasing their relative abundance. Beyond this optimum mean slope value, their relative abundance gradually decreased, due to the fact that sites with mean slope values of .55 or over often contain pockets deep enough to hold larger amounts of water which would take longer to drain. This would create longer wet periods which would produce conditions more suitable for Anopheles and Culex, increasing their relative abundance and decreasing the relative abundance of Aedes and Psorophora. A similar change in relative abundance will occur, if at any given mean slope, the frequency of flooding increases, resulting in less soil exposure.

The results and the above discussion of the statistical analysis have revealed certain relationships between the physical characteristics and the degree of flooding and their combined influence on the mosquito populations in a salt marsh. By determining the mean slope and the frequency of flooding for a ditched marsh and by obtaining information on the frequency of flooding to estimate the frequency of standing water and the number of days per wet period for unditched marsh, a rough prediction, using the information found in appendix tables 1-4, 9-12 and 42 and 43, could be made about the potential relative abundance of salt marsh mosquitoes in both types of conditions. For all independent variables falling between the values listed in these tables, the following regression formulae, based on the standard multiple regression formula (Snedecor and Cochran, 1968). could be used to obtain potential relative abundance values:

For ditched marsh:

$$\sum_{i=1}^{n} \frac{1}{y_{Aedes}} = \sin(b_0 + b_1 m s + b_2 ff1 + b_3 S.1. + b_4 (S.1)^2) 100$$

$$where: \sum_{i=1}^{n} \frac{1}{y_{Aedes}} = the \% relative species abundance$$

$$\sum_{i=1}^{n} \frac{1}{y_{Aedes}} = 1 - y$$

$$\frac{1}{y_{Anopheles}} = \frac{1}{Aedes}$$

ffl = 1/frequency of flooding ms = mean slope S, I = ff/msЬ = 0.78284 b₁ =-0.00494 b, = 5.20616 b₃ =-0.33915 = 0.02399 b_{L}

```
For unditched marsh:
             = sin(b_0 + b_1 fosw1 + b_2 nwet + b_3 s.1 + b_4 (s.1)^2)100
    y
      Aedes
    ٨
             = 1 - y
    У
                     Aedes
      Anopheles
    where: foswl = l/frequency of standing water
             nwet = number of days per wet period
                                b_0 = 0.61028
S_{1} = ff/ms
b_1 = 30.43958
                                b_2 = -0.03892
b_3 = -0.23687
                                b_{\mu} = 0.01253
```

The values obtained from the above formulae represent that proportion of the total number of larvae taken in a sample that would be a particular species. For example, a value of 50% for <u>Aedes</u> means that 50% of the total number of larvae taken in a sample would be <u>Aedes</u>. The above formulae <u>do not</u> give the potential number of mosquito larvae that would emerge from a site during the breeding season. Furthermore, the independent variables used in the regression formulae account for about 70% of the variation in the data. Further study should continue on the relationships of the physical characteristics of the marsh to the relative abundance of salt marsh mosquitoes. This information would be most helpful in improving the formulae and the accuracy of the predictions.

REFERENCES CITED

- Adams, David A. 1967. General description of North Carolina estuarine systems in meeting of the interagency council on natural resources. November 21, 58 pp.
- Barr, A. J. and J. H. Goodnight. 1971. Statistical analysis system. Student Supply Store, North Carolina State University at Raleigh.
- Belkin, John N. 1954. Simple larval and adult mosquito indexes for routine mosquito control operations. Mosquito News 14(3): 127-131.
- Carmichael, G. T. 1957. Effectiveness of ditching in controlling salt marsh mosquitoes. Mosquito News 17(4):265-268.
- Helm, R. W., W. Taylor, W. D. Henderson and V. Conant. 1963. Water management, corner-stone of New Jersey mosquito control. Proceedings of the 50th Annual Meeting, New Jersey Mosquito Extermination Association, p. 129-132.
- Kuenzler, E. J. and H. L. Marshall. 1973. Effects of mosquito control ditching on estuarine ecosystems. Water Reources Research Institute. Report Number 81, 83 p.
- MacCreary, D. and L. A. Stearns. 1935. Effect of drainage work accomplished by the CCC upon the prevalence of mosquitoes at Lewes, Delaware, during 1934. Proceedings of the 22nd Annual Meeting, New Jersey Mosquito Extermination Association, p. 115-121.
- Radford, A. E., H. E. Ahles and C. R. Bell. 1964. Manual of the vascular flora of the Carolinas. University of North Carolina Press, Chapel Hill. 1183 pp.
- Reiley, F. A. 1951. Water management and drainage in open salt marsh areas for mosquito breeding control. Proceedings of the 38th Annual Meeting, New Jersey Mosquito Extermination Association, p. 71-76.
- Richards, A. G., Jr. 1938. Mosquitoes and mosquito control on Long Island, New York, with particular reference to the salt marsh problem. New York State Museum Bulletin Number 316, p. 85-180.

- Smith, J. B. 1904. Report of the New Jersey State Agriculture Experiment Station upon the mosquitoes occurring within the state, their habits, life history etc. Trenton, N. J. v, 482 p., and 47 additional unnumbered pages with figures.
- Smith, L. W. 1962. Water management on the salt marshes of New Jersey. Mosquito News 22(2):81-83.
- Snedecor, G. W. and W. G. Cochran. 1968. Statistical methods. Iowa State University Press, Ames, Iowa, 593 p.
- White, C. M. 1956. Salt-marsh mosquito control in North Carolina during 1955. Mosquito News 16(2):71-73.

FIG. 7 NEWPORT RIVER STUDY AREA, 1972

FIG. II DAVIS STUDY AREA. 1972

NORTH RIVER, 1971

DAVIS, KING'S POINT, 1972

FIG. 17 TOTAL NUMBER OF ADULT MOSQUITOES TAKEN PER MONTH AT THE NORTH RIVER LIGHT TRAP (1970)

FIG. 18 TOTAL NUMBER OF ADULT MOSQUITOES TAKEN PER MONTH AT THE WILLISTON LIGHT TRAP (1970)

AUGUST 17, 1971 NORTH RIVER CARTERET COUNTY, N. C.

FIG. 21 TOTAL NUMBER OF ADULT MOSQUITOES TAKEN PER MONTH AT THE NORTH RIVER LIGHT TRAP (1971)

FIG. 22 TOTAL NUMBER OF ADULT MOSQUITOES TAKEN PER MONTH DURING BITING COUNTS AT NORTH RIVER (1971)

FIG. 23 ACCUMULATIVE DATA FOR THE INTERVAL MAR. 1st-AUG. 17, 1971 WILLISTON, N. C.

FIG. 24 TOTAL NUMBER OF ADULT MOSQUITOES TAKEN PER MONTH AT THE WILLISTON LIGHT TRAP (1971)

FIG. 25 ACCUMULATIVE DATA FOR THE INTERVAL MAR. 1st-Oct. 31, 1972 ATLANTIC BEACH, N. C.

FIG. 27 ACCUMULATIVE DATA FOR THE INTERVAL MAR. 1st-Oct. 31, 1972 DAVIS, N. C.

FIG. 28 ACCUMULATIVE DATA FOR THE INTERVAL MAR. 1St-OCT. 31, 1972 DAVIS, N. C.

DAVIS, N. C.

MONTH AT THE DAVIS LIGHT TRAP (1972)

FIG. 31 TOTAL NUMBER OF ADULT MOSQUITOES TAKEN PER MONTH DURING BITING COUNTS AT DAVIS (1972)

FIG. 32 ACCUMULATIVE DATA FOR THE INTERVAL MAR. 1st-OCT. 31, 1972 NEWPORT RIVER, 1972

FIG. 34 TOTAL NUMBER OF ADULT MOSQUITOES TAKEN PER MONTH DURING BITING COUNTS AT NEWPORT RIVER (1972)

FREQUENCY OF FLOODING / MONTH

FIG. 36 RESPONSE TO FREQUENCY OF FLOODING AT 5 MEAN SLOPE VALUES (DITCHED SITES)

FIG. 37 RESPONSE TO FREQUENCY OF FLOODING AT 8 MEAN SLOPE VALUES (DITCHED SITES)

FREQUENCY OF FLOODING / MONTH

FIG. 38 RESPONSE TO FREQUENCY OF FLOODING AT 5 MEAN SLOPE VALUES (DITCHED SITES)

FREQUENCY OF FLOODING / MONTH

FIG. 39 RESPONSE TO FREQUENCY OF FLOODING AT 8 MEAN SLOPE VALUES (DITCHED SITES)

. .

MEAN SLOPE INDEX

FIG. 40 RESPONSE TO MEAN SLOPE AT 7 FREQUENCY OF FLOODING VALUES (DITCHED SITES)

MEAN SLOPE INDEX

FIG. 41 RESPONSE TO MEAN SLOPE AT 7 FREQUENCY OF FLOODING VALUES (DITCHED SITES)

NUMBER OF DAYS / WET PERIOD

FIG. 42 RESPONSE TO NUMBER OF DAYS PER WET PERIOD AT A FREQUENCY OF STANDING WATER OF 70% AND AT 3 S. I. VALUES (UNDITCHED SITES)

FIG.43 RESPONSE TO NUMBER OF DAYS PER WET PERIOD AT A FREQUENCY OF STANDING WATER OF 70% AND AT 3 S. I. VALUES (UNDITCHED SITES)

NUMBER OF DAYS / WET PERIOD

FIG.44 RESPONSE TO NUMBER OF DAYS PER WET PERIOD AT A FREQUENCY OF STANDING WATER OF 90% AND AT 3 S.I. VALUES (UNDITCHED SITES)

NUMBER OF DAYS / WET PERIOD

FIG.45 RESPONSE TO NUMBER OF DAYS PER WET PERIOD AT A FREQUENCY OF STANDING WATER OF 90% AND AT 3 S. I. VALUES (UNDITCHED SITES) Table I. Data on Frequency. Duration, and Extent of Flooding for Study Areas.

Study årea	No. of sites	Freque flood (at ti	ancy of ng/month de çâuge)	Freque flood) /situ	ncy of ng/month e	Freque standi (in pe	ncy of ng water rcentage)	No. of intervo /si	wet als te	No. of /wet i	days ntervał	No. of interv /sit	dry als e	No. of /dry ii	days Aterval
		rê ₩	Range	Mean	Range	Xeên	Range	Te a J	Range	Mean	Range	Mean	Range	Hea n	Range
North River unditched ditched	26 15	22	5-36 5-36	15.0	5-36 5-36	71.0 63.0	50-90 42-80	5.9	1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	23.0 14.3	7.0-54.0 5.8-39.0	5.5	2-10 2-11	7.0	2.5-8.0 2.0-6.0
Newport River unditched ditched	- 5	22	9-37 9-37	19.0 14.0	5+37 7-19	77.6 53.0	-	7.2 7.6	3-12	23.2 17.8	1.0-40.0 6.0-67.0	6.0 7.6	2-12	6.5 13.0	3.0-11.0 4.5-28.4
Kings Point unditched	21	54	{ ا ا	20.8	1.27	0.08	001 - 4	1,1	Ē	88.4	3.0-240.0	3.7	0-11	4.8	0.0-32.3
Davis ditched	23	ŝ	54-61	20.2	6-33	0.84	00 1- 61	8.9	1-16	14.7	3.6-94.0	8.7	2-15	15.0	3.5-95.0
Wards Creek unditched	-	15	5-36	15.0	5-36	77.0		7.0	1	20.0	4.0-31.0	9.0	1	7.4	2.0-9.0

Table 2. Plant Cover Summary for Breeding Sites of Ditched and Unditched Sections of Study Areas (in percentage).

Study area	Na. of sites	Juncus roemerianus	<u>Distichlis</u> Spicata	<u>Spartina</u> patens	<u>Spartina</u> alterniflora	Baccharis halimifôtia	Borrichia Frutescens	Panicum virgarum	Cladium jamaicense	Salicornia virginica	0 the r
North River undîtched ditched	26 15	43 32	25.0 52.4	0.9 2.3	3 .4 • 3	0.0 24.0	2.2	- 6 29.	0.0	0.0	24.0 0.4
Newport River unditched ditched	- 5	0 21	25.0 40.0	25.0 6.0	50.0 27.0	0.0	0.0	0.0	0.0	0.0	0.0 0.6
Kings Point unditched	21	64	16.4	26.0	0.0	0.95	6.8	0.0	2.1	4.7	0.0
Devis ditched	23	63	6.6	0.61	0.0	2.1	0.0	0.0	0.0	0.0	9.3
Wards Creek unditched	-	15	80.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0

Table 3. Abundance of <u>Aedes</u> - <u>Psorophora</u> and <u>Anopheles</u> - <u>Culex</u> in Ditched and Unditched Sections of Study Areas.

S t udy Breib	of.	Breedin	y index	Specimens	taken	Specimen: /site	s taken	Percentage a	ibundance	Percentage p survival	otential
	sites	Mean.	Range	fotel	4	Hean	Range	<u>Aedes</u> and <u>Psorophora</u>	Anopheles and <u>Culex</u>	Acdes and Psorophora	Anopheles and Culex
Vorth River 	46		ę	- - - -		2	- -				.
ditched	1 2	23.8	.004-262.0	3420	. 8 	228	8-1540	₽£:	25	57 82	5 5 7 7
Vewport River unditched	_	256.0	40-1600-0	141	0	141		ç	F	30	70
ditched	£	3.2	.006-200.0	3 602		5	1-355	28	62	8 99 99	B 62
Kings Point unditched	21	6.5	0.0-276.0	1525 6	0.0	76	1-380	35	65	56	91
Devis ditched	23	2.6	.01-72.6	I I O I	0.0	43	5-198	53	47	86	73
Wards Creek unditched	-	300.0	0.0-4320.0	13,886		13,886		100	ð	76	,

reas
/ April
r Si
۲ ۲
ctio
d Se
t che
Judi
Pu
ก บ บ
îlch
с.
ies
Spec
ulex
ie les
fuop
Pue
or do
Psor
• ••]
Ae de
of ntag
ance ence
pund i
∢∽
е 1
1∎t

Study area	No. of sites	<u>Aedes</u> sollicitans	<u>Aedes</u> <u>taeniorhyn</u> - <u>chus</u>	<u>Aedes</u> at lant i cus	Ocher <u>Aedes</u> Spp.	Psorophora confinnis	Other Psorophora Spp.	Anopheles atropos	<u>Anopheles</u> bradleyi	Anopheles 2nd instar	0 ther Anopheles Spp.	Culex salinarius	Culex Lerritons	Other Culex Sup.
North River unditched	26	43.0 57.0	13.0 87.0	0.0	0.0	0.0	0.0	80.0 20.0	57.0 43.0	0.0	0 0 0 0	0 0 0 0 0	0°0	ф = 6 0
Versport River	<u> </u>						¢	ch n	32 ()	20 0	0 0	28 0	0	11 D
undi tched di tched	- 🛱	88.0	0.06	0.0	60.0	100.0	0.0	1	78.0	80.0	0.0	72 0	6 0 01	0 001
Kings Point unditched	21	75.0	63.0	2,0	20.0	0.0	1.0	55.0	77.0	67.0	0.0	100.0	0	0
Davis ditched	23	25 .0	37.0	0.86	80,0	100.0	0.66	45.0	23.0	33.0	0.0	0.0	0	0 001
Mards Creek unditched	-	6.2	93.8	0.0	0.0	0.0	0.0	0.0	00	0.0	0	0.0	0 0	0 0

Areas	
Study	
s of	
Section	
litched	
Pun a	
and	
Ditched	
of	
Sites	
.5	
Species	
Culex	
୍ଷ ଅ	
Anophe I	
pue	
<u>ero</u>	
roph	
5	
) 동	
ر الح الح	ege).
e o	Cent
Judar	Per
Abt	÷
ج	
Tabl	

Study area	No. of sites	Aedes sollicitans	<u>Aedes</u> taen lor hyn- chus	<u>Aedes</u> at lant i cus	Other <u>Aedes</u> Spp.	Psorophora confinnis	Other Psorophora Spp.	Anophe les atropos	<u>Anophe les</u> bradl <u>ey</u> î	<u>Anopheles</u> 2 <u>nd insta</u> r	Other Anopheles Spp.	<u>Culex</u> salinarius	<u>Culex</u> territons	Other Culex Spp.
Morth River unditched ditched	15 15	20.0 34.0	5.0 17.0	0.0	0.0	0.0	0.0	24.0 8.0	50.0 37.0	c.o. 0.0	0.0	2 .0	0.0	0.0
Newport River unditched ditched	<u>-</u> ت	22.0 35.0	0.1	0.0	8.0 2.0	0.0	0.0	21.0 5.0	19.0 10.01	29.0 10.4	0.0	04	0.0	0.0
Kings Point unditched	21	12.0	0.1	6.0	1.5	0.0	0.2	12.0	30.0	42.0	0,0	5.0	0.0	0.0
Davis ditched	23	12.0	6.0	16.0	10.4	0.5	0.1	0.11	13.0	35.0	0.0	0.0	0.0	0.0
Wards Creek unditched	-	6.2	93.8	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

(in percentage).
Study Areas
sed Sections of
ed and Unditch
ng in Ditche
secies Breedi
nary for Sp
Şurvival Suma
Table 6.

s cudy area	No. of sites	<u>Aedes</u> sollicitans	<u>Aedes</u> taeniorhyn- chus	Aedes at lant icus A	ther ther the	Psorophore confinnis	Other A Psorophora a Spp.	nophe les tropos	Anophe les bradleyi	Anophe les Znd instar	Other Anopheles Spp.	<u>Culex</u> salinarius	Cutex territans	Other Culex Spp.
North River unditched ditched	12 52	7 49	78 81	1.1	00	00	00	52	52	00	00	°5	00	
Newport River unditched ditched		46 80	100 68		83 46	001	00	65 86	82 86	001 06	00	00	్రా	00
Kings Point unditched	2]	92	100	001	001	0	100	95	87	"	0	o	20	o
Davis ditched	23	83	88	8 ⁴	83	100	0	87	70	56	0	o	100	8
Werds Creek unditched		96	26	0	o	0	o	۰	æ	o	ø	o	•	0

Table 7

GROUND WATER LEVELS

Table 8

GROUND WATER LEVELS

Davis

Aug. 2-31, 1972

Ditched Area

					Q	5															
			*	0	+ +	+	 +	ņ.	+ 35	 +	 +	+ .55	ب ب	9. +	+ .7	+ ,2	+.15	ب ب	- <u>†</u> +	+ .85	
		Tide	level	- F	- , 15	+.45	 +	- <u>+</u> . -	<u>ب</u>	+.08	0	<u> </u>	0	0	- <u>+</u> +	 +	+.2	 +	0	+.45	
۹. د	hole	ച		2	0	0	ŝ	Ś	0	0	9	0	0	0	0	'n		0	0	¢	
l n n	st	~		~	0	0	0	٦. ا	0	0	2	0	0	0	0	0	0	0	0	0	
				ы				Ŋ													
		~		8	0	0	0	ō	0	0	m	0	0	0	0	0	0	0	0	0	
		9		7	0	0	0	-	0	0	ا. 5	0	0	0	o	0	0	0	0	0	
	tch	5		2	0	0	0	0.5 0	0	0	0	0	0	o	0	0	0	o	0	o	
	st di	4		m	0	0	0	0.5	0	0	2	0	0	0	0	o	0	0	0	0	
	heare	~	L	- t	0	0	0	0.5	¢	0	2.5	0	o	0	0	0	0	0	0	0.5	
	Hole	2		Ś	0	0	0	m	0	0	ŝ	0	0	0	0	-	0	0	0	0	
	Ī	_		7	0	0	ς. Γ	9	0	0	9	0	0	0	0	Ś	. .	0	0	0	
	ľ	œ	I	7.5	- 1	~ ~	- - +	6.5	0	-1	6.5	ŝ	0	0	0	ц	. en	5	. ~	0	
		-	-	~	0	0	0	~	0	3	. m	0	0	0	0	0	0	0	0	0	
		9	,	~	.0	0	0	2.5	þ	2	ŝ	0	0	0	0	0	0	0	o	0	
	ch-	 	`	ŝ	۰ a	. 0		5	0	5	<u>م</u> ا	0	0	0	Q	0	-	0	c	0	
Ū.	d:t			۲	<u>\</u>															_	
č	est	H	•	ſ	\ C	0	C	2	0	•	о С	0	0	0	0	0	. —	0		0	
כועת	near	~	•	2	. ^	. 0		۰ ۲	· ~	د .	5	0	0	0	0	2	i vo) ur	۱ -1	• 0	
	- 19 je	-	4	и о	, r , r	t	ט 	- ∞	· ~	<u>.</u>	, =	8	0		0		σ	١œ		- 0	
	l	•	-	14	<u>~</u>	<u>م</u> د) ur	`=			-2 -2 -2	, 00				. ~	. v		; =	ე	
		0.40	לפרה	Aug 2	1 _1 55 5	- ~2		- σ	`=		1-1	<u> </u>	2 81	2 C	2 5) K) C	00) 	

%In tenths of feet (0 = Marsh level)

Ωc

- -

Table 9 Ground water Levels

Newport River

Aug. 1-15, 1972

	Ditched Area Iole nearest ditch	ام ا	° H	le ne	Co Parest	ontrol ditch	Area
2	t.	Ś	—	2	£	-+	Ś
4 3.5	ы С	7	Ś	ማ	œ	2	9
с С	t -	o	0	3	12	Ξ	0
0	0	2	- วั	4	~	0	0
0	0	0	0	0	0	0	0
0	0	'n	2	2	0	0.5	0
3.6 3.6	3.6	7.2	-4	ഹ	4	m	
т т	4	Q	~	~	9	. LC	
t - t	ŝ	Ś	• ~~	. ~	9	\ ۲	: ייי
с Э	ŝ	5	5	و.	9	t_/	t-/
of feet (0 = M silable	larst	n level)					

- - 05 - - 05

Tide level * - 2 - 4 0 +.7 + .7 + .7 + .4 + .4 + .2 - .

r~-

w400007w7
Significant Parameters for Unditched Sites and Results of Statistical Analysis. Table 10.

Parame	ter	Degrees of freedom	Regression coefficient	FTest
FOSWI NWET	(1/frequency of standing water) (Number of days/wet period)		30.43958 - 0.03892	20,07329** 5.58918*
s. I.	<pre>(Suitability Index, frequency of flooding x l/mean slope)</pre>	-	- 0.23687	24,28418#***
S.1.2	(s.i.) ²	1	0.01253	18,46232***
ERROR		33		
Multip ***P > **P >	<pre>>le correlation coefficient (R²) > 0.0001 > 0.01 > 0.05</pre>	= 0.6926751	Director.	

Parameter	Degrees of freedom	Regression coefficient	F-Test
MS (Mean slope) FF1 (1/frequency of flooding)		-0.00494471 5.20616128	3.66171 ⁰ 15.97301**
of flooding x 1/mean slope	-	-0.33915241	21 . 16088%
s.1.2 (s.1.) ²	-	0.02399 44 2	15.79464**
ERROR	31		
Multiple correlation coefficient (R ²)	= 0,728898684	ŕ	

Significant Parameters for Ditched Sites and Results of Statistical Analysis. Table 11.

***P > 0.01 *P > 0.05 • > 0.10

APPENDIX

1
6
ź
Ē
Ś
ġ
ที
ě
÷.
÷
Ę
P
jų.
ě
ũ
ş
ş
÷
D
ţ
8
ii.
đ
ent
ž
Ð
÷0
ē
, șt
Dur
<u>،</u>
ğ
ğ
E.
ŝ.
ist
Ē
Ъ.
har
-
8
iys i
£
5
2
å
-
1
÷-

	Site Number	Depth of water (in inches)	Surface area (sq.ft.)	Mean s lope index	Frequency of flood. /month	Frequency of standing water (%)	Number of wet periods	Hean No. of days/ wet perfod	Number of dry periods	Mean No. of days/ dry period	Distance from nearest ditch (in feet)
ards Creek Study area	-	0.01	600	41.0	15	נג	٢	20.0	10.0	4.0	83.0
orth River											
Study area	~	7.0	20	0.01	15	٩	9	18.6	5,0	3.0	20.0
	~	÷.5	ŝ	15.0	5	8	Ē	0.05	2.0	7.0	55.0
	4	2.0	8	•. -	5	2	. vo	17.0	6.0	4.5	51.0
	ŝ	2.0	300	6.0	5	57	c 0	0.11	0.01		67.0
	¢	5	150	5.0 2	5	1-6	0	6,9	10.0	2.5	21.0
	~	2.5	150	0,4	5	67	æ	12.6	8.0	0.4	63.0
	æ	3.0	150	5.0	15	66 66	10	10.0	8.0	5.0	55.4
	م	1.5	150	2.5	15	54 7	=	5.8	0.11	4.5	71.4
	2	1.8	2	6,0	15	43	ማ	7.0	0.6	5.7	51.0
	=	2.0	<u>5</u>	3.0	15	26	Ś	23.0	0.4	5.0	51.0
	2	1.7	150	0 m	5	£	٩ م	7.5	0.6	5.5	23.1
	<u>m</u> .	2.5	<u>5</u> 0	0. 4	5	63	ማ	10.5	8.0	, ,	48.5
	± :	7.0	1500	° .	15	53	v	8.0	5.0	6.0	30.0
	<u>~</u>	о	250	0.0 8	5	2	Q	19.0	7.0	6.0	106,0
	<u>e</u> :	4	150	°.	5	3	¢	12.0	8.0	7.0	74.0
	<u>~</u>	0 · 2	120	0°0	5	35	~	16.0	5.0	0.4	137.0
	₽		2	6.0	15	g	•0	12,8	7.0	6.0	236.0
	<u>ታ</u>	0.0	25	5. 0	5	2	9	13.8	5.0	5.0	298.0
	ຂ	0	2	0.0	15	50	Ξ	7.0	10,0	76	254.0
	21	0, †	500	7.0	15	63		9.2	0.6	6,8	238.0
	52	3.0	330	0.01	5	75	~	16.0	6.0	7.0	272.0
	ដ	~	150	0.7	ž	80	~	17,0	6.0	6.0	210.0
	ž.	Q.	1460	7.0	5	20	7	15.0	6.0	6.0	108.0
	ង	6,9	150	1.0	5	70	ŝ	25.0	3.0	6.0	135.0
	2	6. 3	9	2.0	5	8	4	34.0	2.0	2.5	315.0
	27	2.4	230	0.	5	8	ŝ	53.0	0°†	6.0	288.0

- 5
ē
.=
- C
ō
പ്
-
-
_
_
- - -
) e l .
able I.

_

	Site number	Depth of water (in inches)	Surface area (sq.ft.)	Mean s lope i ndex	Frequency of flood. /month	Frequency of standing water (%)	Number of wet periods	Mean No. of days/ wet period	Number of dry periods	Mean No. of days/ dry period	Distance from nearest ditch (in feet)
North River	58	3.2	300	5.0	15	06	±	34.0	4.5	8,0	185.0
Study area	53	2.2	100	0,4	5	70	ŝ	20.0	0.0	8,0	264.0
	, č	1.5	150	2,0	15	60	Ś	18.0	0.1	0, 0	350.0
([])	. 7	-	150	1.0	15	68	ø	17.0	e.o	6.0	176,0
1	: 2		051	-#	5	72	2	21.0	0, 7	5.0	247.0
	:5		3 5	0.4	ň	06	. ~~	54.0	2.0	3.0	323.0
	12		150	6.0	Ϋ́	88	~	53.0	2.0	3.0	256.0
	۲, ۲	1-1	000	6.0	. ĩ	8	Ś	24.0	0,4	7.0	166.0
	; 2		100		Ľ.	- 1 9	<u>م</u>	23.0	5.0	7.0	136.0
	22			i c i c	ı ۲	63		18.0	0. †	7.0	136.0
	20				<u>ہ</u> ہ	6		24.0	0. †	6.0	339.0
	2 2				<u>.</u> .	80	. u	20.0	6,0	6.0	376.0
	23				, r	66	.00	12.5	7.0	6.0	319.0
	7				Ξ.	5	. 00	0. 0.	7,0	0.8	311.0
	7	- -	33	0	55	68	80	12.0	8.0	6.0	242.0

Table 2. Data on the Physical Characteristics, Frequency, Duration and Extent of Flooding at Davis Study Sites, 1972.

Site No.	Depth of water (in inches)	Surface area (sq.ft.)	Mean s lope index	Frequency of flood, /month	Frequency of standing water (%)	Number) of wet periods	Mean number of days/wet period	Number of dry periods	Mean number of days/ dry period	Distance from nearest ditch (in feet)
**************************************	2000/00/00/2222 00000000000000000000000	2300 100 100 100 100 100 100 100 100 100	250300000000000000000000000000000000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	558358°335388838358838383		22 34 36 00 00 00 00 00 00 00 00 00 0	໑໑∞∞≂∞៷៷ໞຉຉຬຬ <i>∞</i> ∞∞ຬຉຉຬຬ <i>∞</i> ∞	002222888000222002340008885 0000000000000000000000000000000	0.0 0.0 264.0 312.0 312.0 312.0 312.0 312.0 23.0 23.0 23.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25
23 23	0.0 2.0 0.0	150	00.00	33.00 33.00	~~=	<u>∽</u> –∽	8.5 28.5	2 5 5	7.6 95.0 5.6	70.0 100.0 50.0

🗄 Unditched sites

f Flooding	
s Extent o	
Duration and	
Frequency,	
Characteristics,	Sites, 1972.
the Physical	s Point Study
Data on	ar King
Table 3.	

No.	Depth of water (in inches)	Surface area (sq.ft.)	Mean s tope index	Frequency of fload. /month	Frequency of standing water (%)	Number of wet periods	Mean number of days/wet period	Numaer of dry periods	Mean number of days/ dry period	Distance from nearest ditch (in feet)
		2	00 00	17 6	۲۲	Ŷ	26.0	Ś	0.01	2038
-	<u>ہ</u> .0	2	nn . Co	o./-) r	0 1 6	. ve	0.11	1739
2	5.0	2500	2.00	22.00	5	~ 1		1 ~		1509
~	7.0	00	10.00	27.00	8	7	0.54 1	- 、		
1.3	0	400	5.00	19.60	11	-	23.0	ام		
r u		5	20.00	22.00	82	9	29.0	Ś	o ' -	
N 4		ŝ		23 20	100	-	240.0	0	0.0	649
0 1				10.12	8	_	240.0	0	0.0	577
~ 0	, c	0 3		00.02	201	_	240.0	0	0.0	667
io -		33	20.00		2	-	240.0	0	0.0	368
σ	10.5	2	nn-71	00.72	39	- 19	6.8.0	2	2.0	92
2	0.0 .0	200	2.0	Z/.00	R :	•••	2.00		15.0	1311
=	5.0	전	8.00	15.20	63	۰: ز	, , , , , , , , , , , , , , , , , , ,	~ 6		1 IKB
12	0,6	00 1	5.00	17,60	5	0	Z-11	л: Т		000
<u> </u>		150	2.00	17.60	38	=		= '		21.1.
<u>}</u>	10	5	15,00	23.20	8	~	66.3	N ·	<u>,</u> ,	
5		1500	10,00	23.20	<u>8</u>	2	103.0	_	0. - '	
22	o c o a	5	20,00	27.00	100	-	240.0	0	0.0	4 20
2 :					ş	2	104.0	-	10.0	056
-	•	3) ;		0 22	J.	8°0	240
ŝ	6,0	150	00,00	19.61	2:	- •				161
<u>a</u>	0.4	5	23.00	8. -	<u>+</u>	ø				116
20	7.0	1500	15.00	12,20	67	æ	18.0	~	ם פ סית	
12	6.5	100	54.00	13.60	76	9	27.0	<u>م</u>	0.0	1667

, Duration and Extent of Flooding	
[able $m{u}_{\star}$ Data on Physica! Characteristics, Frequency	at Newport River Study Sites. 1972.

Site No.	Depth of water (in inches)	Surface area (sq.ft.)	Nean s lope index	Frequency of flood. /month	Frequency of standing water (%)	Number of wet periods	Hean number of days/wet periods	Number of dry periods	Mean number of days/ dry periods	Distance from nearest ditch (in feet)
-	 -	hon.	4	-	- 6 F	u	36 0	u	- -	271
• ~	- -1	201	• •	2=		• œ	2.0	n ac		
	· 00	004	- 40	: <u>e</u>	95.0) ~~	67.0	2	2 	2 - F
-1	m	100	m	5	65.0	`=	4.8	'=	5	0.69
Ś	~	200	Š	~	27.0	ი	6.2	æ	28.4	43.7
Ŷ	7	200	m	~	15.0	Ś	6.0	6	20.0	48.0
~	~	500	~4	~	26.0	œ	6.8		0.61	12.0
æ	æ	100	50	=	61.0	12	0.11	12	7.0	58.0
σ	ŝ	200	Ś	Ξ	0.11	80	0.11	80	15.0	55.0
% 01	e,	40000	~	6	77.6	~	23.2	6	6.5	200,0
=	Ś	150	80	~	0.84	æ	12.5	~	12.3	15.0
12	*	400	~	61	54.0	0	11.3	0	6,8	4 . T
Ê	t.	004	7	19	56.0	~	17.0	e,	0.6	66.7
ŧ	~	200	ĥ	61	57.0	-1	30.0	ŝ	12.0	45.0

stUnditched site

	<u>ivrica</u> cerifera	•	
	Pinus taeda	•	
	Ci lata	•	~ <u>~~~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Scirpus robustus	ŝ	_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	<u>Salicornia</u> virgi <u>nica</u>	o	00 00000000000000000000000000000000000
	<u>Cladium</u> jamaicense	o	
.centage).	<u>Panicum</u> virgatum	•	00000000000000000000000000000000000000
1971 (in per	Borrichia frutescens	٥	00010000000000000000000000000000000000
Creek and North River Study Sites,	<u>Baccharis</u> halimifolia	o	
	<u>Spartina</u> alterniflora	o	000000000000000000000000000000000000000
	<u>Spartina</u> p <u>atens</u>	c	No No No O O O O O O O O O O O O O O O O
y for ward's	<u>Distichlis</u> spicata	â	° - 6 5 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Cover Summar	<u>Juncus</u> ruemer i anus	12	౼౿౿ౘ౿ౘ <mark>ఄ</mark> ౢఀ౸ౘౘౘౘఀఀ౸ఴఀ౸ఴఀ౸ఴఀౚఀౚఴఴఀౚఀౚౚౚఴఀౢౢౢౚఀౚఴఴఀౢౢౢౚఴఀౚఴఴఀౢౢౢౚౢౢౢౢఴౢౢౢౢౢౢౢౢ
Plant	5ite number	_	~~*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Table 5		Ward's Creek Study area	North Study area

Cover Summary for Ward's Creek and North River Study Sites, 1971 (in percentage). Plant Ś

	S i te No.	<u>Juncus</u> roenerian <u>us</u>	Distichlis Spicata	Spartine patens	<u>Soartina.</u> alterniflora	<u>Bacchari</u> s halìmifolia	<u>Borrichia</u> fr <u>utescens</u>	<u>Panicum</u> <u>virgatum</u>	<mark>Cladium</mark> jamaicense	<u>Salicornia</u> virginica	Scirous robustus	LVE. Ci late	Pinus. Laeda	Hyrica. cerifere
North	, s	20	80	с С	6		. 0	•	0	-	0	•	•	0
River) 2	2	59	0	. 0	0	ŝ	0	Ģ	0	•	0	0	•
		. 3	2	Ģ	0	0	0	0	0	0	•	•	0	¢
Study	22	001	ð	0	0	0	0	0	Ó	0	0	•	0	0
e a l		100	0	D	¢	Ģ	0	0	0	0	0	Ċ	•	0
(Cont.)	*	001	0	o	0	0	0	0	0	0	0	0	0	0
	5	001	0	0	0	•	0	0	0	0	0	0	0	o
	2	001	•	°	0	0	0	0	0	0	ø	o	0	¢
	27	100	0	¢	0	0	0	0	0	0	•	•	0	ò
	8	1 0	3	0	¢	¢	0	0	0	0	0	ò	0	•
	6	001	0	•	0	0	0	ċ	0	0	0	0	o	0
	ş	50	2	•	0	0	20	•	0	0	0	0	•	•
		100	0	0	0	0	0	0	0	0	0	•	0	•
	42	80	o	0	0	•	20	0	•	0	0	•	0	o

(Continued)
،
ab le

1972 (in percentage).
Sites.
Study
Davis
for
Summary
Cover
Plant
Table 6.

Site No.	<u>Juncus</u> roemerian <u>us</u>	Distichlis Spicata	<u>Spartina</u> patens	<u>Spartina</u> alterniflora	<u>Baccharis</u> halimifolia	<u>Borrichia</u> <u>frutescens</u>	<u>Panicum</u> virgatum	<u>Cladium</u> jamaicense	<u>Salicornia</u> virginica	<u>Scirpus</u> rob <u>ustus</u>	<u>lva</u> ciliata	Pinus taeda	<u>Myrica</u> cerifera
* v	uu i	c	c	o	0	0	0	0	0	0	0	o	•
		> c	• c	• c		c	c	c	0	0	0	0	0
# 50	3	>	•			5 6	, ,			c	c	901	ç
ð	0	0	Ð	•	0	0	Þ				,	2	• e
-	0	•	8	0	2	0	0	0	.		- •		
~	100	0	•	0	0	0	0	0	ð	•	þ	.	5
	3	. 0	60	0	0	0	0	0	0	0	0		•
	3	0	50	0	0	0	0	0	0	•	0	•	•
u	100	0	0	0	0	0	0	0	0	0	0	•	5
` ~	001		0	0	0	0	0	0	0	0	0	0	0
• •	8	0	20	0	0	0	0	0	0	•	o	0	Ċ,
. 00	5	-	c	0	a	0	0	•	Ð	0	0	0	0
. 0	ž		05	þ	25	0	0	0	0	0	0	•	0
<u>ء</u>		0	0		. 0	0	0	•	¢	0	0	0	ø
2 =	001	• •	0	0	ð	0	0	0	0	0	0	0	Ō
12	00	. 0	0	0	0	0	D	0	0	•	0	•	0
: =	0	0	001	0	0	o	0	0	0	0	0	•	0 (
<u>+</u>	•	¢	20	0	0	0	0	Q	0	o	•	0 1	0 1
2	50	50	0	0	0	0	0	Ð	•	0	0	0	0
2	001	o	0	o	0	0	0	•	0	•	0	0 0	0 0
17	100	o	0	0	0	Q	0	0	0	0	.	-	2 (
8	001	0	0	0	0	0	o	0		0		.	
6	80	0	20	0	0	0	•	0	0	0	•	•	0 .
50	20	0	80	0	0	0	0	0	0	0	0	0	Þ
2	100	0	o	0	0	0	0	0	0	0	0	• ;	۵.
22	•	0	0	0	2	0	0	0	0	0	Ð	5	2
53	0	66	0	٥	o	0	0	0	0	•	0	•	0
* Undl	tched												

Myric	
Pinus Laeda	
<u>{va</u> ciliata	
Scirpus robustus	
Salicornia virginice	******
<u>Cladium</u> jamaicense	NGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
Panicum virgatum	
<u>Borrichia</u> frutescens	
<u>Baccharis</u> halimifolia	
<u>Spartina</u> alterniflora	
<u>Spartina</u> patens	[%] %०००००००० <u>२</u> 88००%०००० <u>२</u>
<u> listichlis</u> <u>spicata</u>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
<u>Juncus</u> roemerianus	៰៷ <u>៰៷៰៰៰៰៰៰</u> ៰៰៰៰៰៰
Site No.	ーメネットをクローはたいどいりのの。

Table 7. Plant Cover Summary for King's Point Study Sites, 1972 (in percentage).

(in percentage).
1972
Study Sites,
River
Newport
fer
Sumary
Cover
Plant
Table 8.

I	
<u>Myrica</u> cerifera	
Pinus taeda	
ci liata	
Scirpus robustus	
Salicornia virginica	
Cladium jamaicense	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Panicum virgatum	
<u>Borrichia</u> frutescens	0000000000000000
<u>Baccharis</u> <u>halimifolia</u>	00000000000000000000000000000000000000
<u>Spartina</u> alterniflora	7, 5, 5 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5
<u>Spartina</u> patens	
Distichlis spicata	ຑ ຘຨຑຉ <u>ຨ</u> ຬຌຬ຺ຬຌຬ
Juncus roemerianus	
Site No.	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

²Unditched site

	Site No.	Mean Breeding Index	Range	Total Specimens taken/site	Total specimens identified	<u>Aedes</u> and <u>Psorophora</u>	Anopheles and <u>Culex</u>
Ward's	•					-	
Ĉreek	1	0.000	0-4320.0	13,886	11,157	100/13,886	070
Study							
ərea							
North	2	2 000	0- 25 0	133	80	70/93	30/40
liver	ĩ	0 440	0- 2.6	244	106	80/195	20/49
tude.	4	267.400	0-3420.0	1540	433	100/1.540	
area	ç	14.000	0-151.0	88	40	57/50	43/38
	6	0.004	0- 0.025	8	3	67/5	33/3
	ž	6,100	0- 69.0	186	53	29/54	71/132
	ŝ	2.100	0- 14.7	124	34	17/21	83/103
	9	0.550	0- 3.6	56	24	13/7	87/49
	10	3.000	0- 43.0	199	136	100/199	
	- 11	3.300	0- 43.0	175	74	43/75	57/100
	12	1,500	0- 20.0	36	20	25/9	75/27
	13	0.540	0- 5.6	98	53	35/34	65/54
	14	61.000	0- 445.5	289	242	86/248	14/41
	15	2.000	0- 17.3	183	73	46785	54/98
	16	1,800	0- 18.0	138	103	100/138	0/0
	17	1,000	0- 4.2	131	39	25/32	75/99
	18	4.500	0- 28.0	194	48	70/136	30/58
	19	1,000	0- 9.6	45	27	30/14	70/31
	20	I.900	0- 13.0	132	57	78/103	22/29
	21	7.900	0- 35.2	237	116	90/213	10/24
	22	F.800	0- 5.6	141	66	75/106	25/35
	23	2.100	0- 47.0	194	90	80/155	20/39
	24	1,600	0- 19.2	132	48	35/46	55/86
	25	13.000	0- 80.0	18	10	10/2	90716
	26	2.100	0- 16.0	50	12	0/0	100/50
	27	2,000	0- 12.0	90	37	0/0	100/90
	28	1.300	0- 13.0	50	23	0/0	100/50
	29	1.100	0- 8.3	65	25	0/0	100/65
	30	1,400	0- 13.0	57	20	0/0	100757
	31	1.800	0- 12.0	73	22	0/0	01//3
	32	1,300	U- 11.0	54	17	6/4 5/5	94/00
	33	1.700	0- 21.6	107	44	2/2	100/1102
	34	1.800	U- 17.6	110	47	3/2	007110
	35	0 500	U- 4.Z	53	22	374	3//21
	36	1.000	U- /.5	24	10	0/0	100754
	j/	4.000	u- <u>jj</u> .U	22	24	0/0	100/88
	50	4.000	0- /2.0	60	47 22	5/3	05/60
	39	0.200	0 1.25	24	11 47	575 55760	45/11
	40 6.1	2.000	0~ 23.0	/2	72	23/11	77/3A
	41	0.500	u-).+	77	~ ~		

Table 9. Abundance of <u>Aedes</u> - <u>Psorophora</u> and <u>Anopheles</u> - <u>Culex</u> Species at Ward's Creek and North River Study Sites, 1971 (percentage/raw number).

Table 9. (Continued)

	Site No.	<u>Aedes</u> sollicitans	<u>Aedes</u> <u>taeniorhyn-</u> <u>chus</u>	Other <u>Aedes</u> Spp.	<u>Psorophora</u> confinnis	Anopheles atropos	<u>Anopheleş</u> <u>bradleyi</u>	Other Anopheles	<u>Culex</u> salinarius
Word's									
Creek Study	1	6,2/860	93.8/13,052						
area									
Numb	2	58 0/77	12.0/16			4/5	26/35		
0 Luor	2	65 0/158	15.0/37			1/2	19/46		
Ctudy.	ú	21 0/339	78.0/1201			0/0	0/0		
3100 y	5	47 0/41	10.0/9			23/20	20/18		
3100	í.	67 0/58	0/0			0/0	33/3	_	
	2	17 0/32	8.0/15			9/16	62/115	3/6	
	ห์	17 0/21	0/0			13/16	70/87		
	c C	13 0/7	0/0			20/11	67/38		
	10	60 0/119	40.0/80			0/0	0/0		
	11	39 0/68	4 0/7			0/0	53/93		4/7
	12	25 0/9	0/0			15/5	60/22		
	12	22.0/32	2 0/2			6/6	56/55		2/2
	10	16 0/46	70 0/202			2/6	12/35		
	1.4	28 0/69	8 0/15			10/18	17/31		25/46
	12	50.070 7 61.0/84	20 0/28	14719	2/3	2/3	0/0		
	10	19 0/04	B 0/10			12/16	62/81		
	17	10,0/24	6 0/12			5/10	25/49		
	10	04.0/124	8 n/h			7/3	60/27	3/1	
	19	72.0/10	5.0/7			0/0	22/29		
	20	73.0790	5.077			2/5	8/19		
	21	64,0/199 35 o/195	0.0/14			14/20	11/16		
	22	74.07104 28.0755	52.0/101			6/12	14/27		
	23	20.0/54	52.0/101			12/16	54/71	10/2	
	24	29.0/30	5.0/7			0/0	80/14		
	25	10.072	0.070			8/4	92/46		
	26	070	0/0			32/29	68/61		
	2/	0/0	0/0			30/15	70/35		
	28	070	0/0			44/29	56/36		
	29	070	0/0			5/3	95/54		
	30	070	0/0			32/23	68/50		
	31	070	0/0			18/12	76/48		
	32	0.0/4	0/0			60/64	35/37		
	33	5.0/5	0/0			68/75	32/35		
	34	0/0	0/0			37/20	60/31		
	35	3.0/2	0/0			31/17	69/37		
	36	0/0	070			01/10	77/41	5/2	
	37	0/0	0/0			34/30	66/58	2	
	38	0/0	070			46/93	50/26		
	39	5.0/3	0/0			22/16	23/17		
	40	36.0/26	19.0714			40/22	32/16	5/2	
	41	14,0/7	9.0/4			16/21	64/65	21-	
	42	0/0	0/0			36/31	04/33		

Site No,	Hean breeding index	Range	Total specimens taken/site	Total specimens identified	<u>Aedes</u> and <u>Psorophora</u>	Anopheles and <u>Culex</u>	<u>Aedes</u> sollicitans	Aedes taeniorhyn- chus
A*	57.30	2.30-234.0	177	145	0/0	100/145	0/0	
B×	96.00	5.00-450.0	114	98	2/2	98/96	0/0	2/2
Č*	8.00	0.40-31.0	132	132	99/131	1/1	25/32	
ī	5.30	0.15-12.6	55	55	100/55	0/0	2/1	
2	0.26	0.01- 0.9	27	27	100/27	0/0	0/0	
ī	3.20	0.40- 7.7	49	37	91/37	9/3	13/5	
- <u>4</u>	0.00	-	ő	ō	0/0	0/0	0/0	
Ś	0.65	0.10-1.2	Š	Ś	0/0	100/5	0/0	
6	2.30	0.10- 4.5	ιõ	10	56/6	44/4	50/5	
7	2.10	0.10- 9.1	20	18	60/10	40/8	28/5	
8	3,90	0.20- 17.6	24	24	17/4	83/20	8/2	
9	1.90	0.40- 4.0	38	38	68/26	32/12	0/0	
ιó	2 60	0 20- 20.0	72	71	49/34	51/37	20/13	
11	8.10	0.20- 65.0	198	168	47/178	53/90	8/14	2/1
12	6 40	0 60- 18.9	93	82	19/7	81/75	5/4	
13	6.20	0.20- 20.0	51	51	81741	19/10	41/22	
14	1 70	0 15- 6 7	: 11	12	15/5	85/27	9/3	6/2
15	1 10	0 20- 1 80	18	18	0/0	100/18	0/0	
16	6 60	0 06+ 77 60	156	156	70/100	30/46	20/31	9/14
17	1 30	0.10- 1.80	31	31	3/1	97/30	3/1	
iń	1 30	0 10- 1 80	29	29	0/0	100/29	0/0	
19	0.00	-	í	õ	0/0	0/0	0/0	
20	0.84	0.05- 4.20	1 12	11	100/33	0/0	40/13	
21	6 30	0 40- 16 0	12	12	8/1	92/11	8/1	
22	0.00	-	0	0	0/0	0/0	0/0	
23	0.90	0.15- 4.5	15	15	20/3	80/12	20/3	

Table 10. Abundance of <u>Aedes</u> - <u>Psorophora</u> and <u>Anopheles</u> - <u>Culex</u> Species at Davis Study Sites (percentage/raw number).

#Unditched Sites

Table 10. (Continued)

Site No.	<u>Aedes</u> atlanticus	Other Aedes Spp.	<u>Psorophora</u> confinnis	Other <u>Psoro</u> . Spp.	Anopheles atropos	<u>An</u> . <u>bradleyi</u>	<u>An</u> . 2nd instar	<u>Culex</u> territans	Other <u>Culex</u> Spp.
A ⇔					2/4	44/64	46/68	6/9	
R.☆					8/8	44/42	31/30	14/14	2/2
C::	42/53	2/8		30/38					171
1	94/52		4/2						
2	100/27								
3	70/25	6/3		2/1			973		
ű.	•								
5						60/3	40/2		
6	10/1						40/2		
7.	28/5					16/3	28/5		
8	4/1		4/1		8/2	8/2	68/16		
9	30/11	37/14				22/5	1077		
10		29/21			3/2	12/9	30/20		
11		37/62			11/19	9/16	33/55		
12	3/2				171	25/20	66/54		
13	6/3	30/16	4/2		9/5		9/5		
14					6/2	25/8	54/1/		
15					• /1	12/2	00/10		
16		41/65			3/4	4//	43732		
17					40/12	10/5	41/12		
18					41712	14/4	40710		
19		• • •							
20 21	57/19	371			42/5	8/1	42/5		
22 23					34/5	671	40/6		

#Unditched Sites

	5 tudy	Sites, 1972 (percentage/ra	v number).		•	
Site No.	Mean breeding index	Range	Total specimens taken/site	Totel Specimens identified	Aedes and Psorophora	Anopheles and Culex	Aedes sollicitans
-	2.80	.050-23.5	178	178	20/36	80/142	15/21
7	20.00	2.500-90.0	2	21		100/21	10111
m	10.00	.1 -63.0	298	298	1/3	99/295	1/2
t	2.50	9.6 - 4.	16	16		100/16	7
Ś	1.20	.05 - 2.4	77	11		100/77	
9	0.61	.20 - 1.8	22	22		100/22	
2	0.18	4.1 - 60.	26	<u>5</u> 6		100/26	
œ	1.10	.10 - 8.4	27	27		100/27	
σ	0.28	. 15 - 0.6	16	16		100/16	
2	0.80	.20 - 2.4	=	=		100/11	
=	0.10	.15 - 2.4	<u>+</u>	1	1/1	61/66	
12	3.40	.40 -16.0	61	61		61/001	
2	0.15	•	-			100/1	
Ŧ	0.40	.05 - 2.1	27	27		100/27	
ñ	10.70	.15 -55.3	011	110		100/110	
2	0.26	.05 - 1.25	22	22	5/1	95/21	5/1
<u>-</u>	0.68	.10 - 3.0	E	31	[/ 1	6/30	
8	0.45	. 15 - 1.35	=	Ξ	27/3	73/8	18/2
6	0.05	.00520	81	18	100/18		95/17
20	65.20	1.5 -276.0	387	387	98/38	2/6	92/357
21	12.80	.1 -69.0	273	226	49/107	51/119	26/60

Table II. Abundance of <u>Aedes - Psorophora</u> and <u>Anopheles</u> - <u>Culex</u> Species at King's Point Study Sites, 1972 (percentage/raw number)

Table II. (Continued)

Site No.	Aedes taeniorhyn- chus	<u>Aedes</u> atlanticus	Other <u>Aedes</u> Spp.	Other Psorophora Spp.	Anopheles atropos	<u>Anopheles</u> bradleyi	<u>Anopheles</u> 2nd instar	<u>Culex</u> salinarius
	0.5/1		2/4		6/12	24/43	50/86	0.5/1
	0.271					50/10	50/11	
4	1/1				1/2	24/72	73/198	
5	17.1				32/5	6/1	62/10	
4					24/18	40/31	36/28	
ž					23/5	41/9	36/8	
2					27/7	27/7	46/12	
6					40/11	26/7	33/9	
ő					31/5	13/2	56/9	
9					18/2	18/2	64/7	
10			7/1			15/2	78/11	
11						79/15	2/14	
12							100/1	
10					11/3	26/7	63/17	
19					8/9	18/20	74/81	
10					9/2	50/11	36/8	
10	471				6/2	61719	29/9	
18	-+/ 1		9/1		9/1	55/6	9/1	
19	5/1					1.43	171	
20	6/24				1/2	1/3	91771	8/23
21	1/2	2/4	17/4	o 3/I		12/25	31771	0/25

Sīte No,	Mean breeding index	Range	Total specimens taken/site	Total specimens identified	<u>Aedes</u> and <u>Psorophora</u>	Anopheles and <u>Culex</u> .	Aedes sollicitans	<u>Aedes</u> <u>taeniorhyn</u> + <u>chus</u>
	4.30	.4-0019.2	36	36	66/24	34/12	66/24	
2	0.40	-	1	I		100/1		
3	17.50	.4-0200.0	355	355	31/106	69/239	30/105	171
4	3.80	4-0009.6	9	9		100/9	0/0	
5	0.20		1	i i	100/1			
6	0.00	.0-	0	0				
7	0.00	.0-	Û	0				
8	4,20	.1-0025.6	128	128	100/128		80/104	6/8
9	0.35	2-0000.8	5	5	40/2	60/3	40/2	
10*	256.00	40.0-1600.0	156	156	30/47	70/109	22/35	0.07/1
11	0.00	.0-	0	0				
12	0.00	. Ů-	0	0				
13	8,00	.4- 14.0	36	36	6/2	94/34	7/2	
14	2.40	,2- 7.2	27	27	28/8	72/19	28/8	

Table 12. Abundance of <u>Aedes</u> - <u>Psorophora</u> and <u>Anopheles</u> - <u>Culex</u> Species at Newport River Study Sites, 1972 (percentage/raw number).

*Unditched Site

Table 12. (Continued)

Site No.	Other <u>Aedes</u> Spp.	Psorophora confinnis	Anopheles atropos	Anopheles bradleyi	Anopheles 2nd instar	<u>Culex</u> <u>salinarius</u>	<u>Culex</u> territans	Other <u>Culex</u> Spp.
 2 3 4			6/2 5/18	16/6 100/1 16/57 99/8	12/4 46/162 1/1	1/1		1/2
5 6 7 8 9	12/15 8/11	2/1	21/32	20/1 19/29	° 29/46	1/2	40/2	
11 12 13 14	0,11		8/3 7/2	58/21 37/10	16/6 19/5	55/2 7/2	55/2	

	Total	3-20-20-3
	42	
	41	
	ŗ0	0,000000000000000000000000000000000000
	39	
	38	
	37	
	36	C O O O O O O C O O O O O O O O O O O O
	35	
	34	***********************
	33	
	32	
	۳ ۲	
	30	
ai	29	••••••••••••••••••••••••
ophor	28	
Psor	27	
S S	26	C C C C C C C C C C C C C C C C C C C
Acde	25	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	54	-0-00000000000000000000000000000000000
	23	30000000000000000000000000000000000000
	72	0000-00-00-00-00-00-00-00-00-00-00-00-0
	21	00000000000000000000000000000000000000
	20	00000000000000000000000000000000000000
	61	40000000000000000000000
	18	0000000*000000*00000000000000000000000
	16	<u>478</u> 878 808300000005550030000
	<u>_</u>	22 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0
	No.	
ate	Site	4-10 11-17 25-31 18-24 15-14 15-23 22-28 22-
•		Apr. July

Table 13. Total Number of Larvae Taken per Weekly Interval from Ward's Creek Study Area and North River Study Sites (Unditched) 1971. (Based on Total Number Identified)

108

Mards Creek

~
-
Ψ.
۰.
- 5
- 21
E
-
ç.
~
÷
~~~
_
-
-
_
Ľ
Ē.
<u> </u>
<del>د</del> ].
le 1).
ole 1).
ble 13.
able 1).
Table 1].

) e C										Anoph	eles		ulex															
v	ite No.	91	8	61	20	21	22	23	24	25	<b>26</b>	27	58	 62	e e		13	~ ·	4	5 3	5 3	, 38	3	G <del>7</del>	Ŧ	42	Total	1
4 E 3 4 E 3 4 E 3 5 2 2 5 2 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2			0	-00000000000000000000000000000000000000	00000000000000000000000000000000000000	N000000-0000000000000	0000000000000000000000	-0-0-0000-0-000NN-0000	-00000000-0030-00	00000000000-000000000000000	000000000000000000	00400000004040000000	00-000000000-0-00000000	00-00000-040-0-00404000	000000000000>*******	000000000000000000000000000000000000000	0000-000-+00-0000-0000		000	00+000000-000×0+000-000-	0N-000000000000		0			0-0000000000000000000000000000000000000	52845000357590803838303 * · · ·	
																									Tota	=	5	

																	I
Date							Acde	si anc	PSOI	obhoi	현						
Site No.	2	ŝ	÷.	Ś	ę	~	æ		2	Ξ	12	£	<u>+</u>	ŝ	17	Total	
Mar. 4-10	0	0	•	0	0	0	0	0	0	0	•	0	0	~	0	2	L
11-17	0	0	0	0	0	Þ	0	•	0	0	0	0	0	Þ	-	_	
18-24	0	0	¢	0	0	D	0	•	Ċ	0	0	0	4	-	Q	5	
25-31	-	0	Ŷ	0	-	0	0	0	0	N	÷	Ģ	-	0	0		
Apr. 1- 7	-	9	Ξ	-	0	-	0	0	0	0	0	2	0	m	0	25	
8-14	=	æ	ž	0	-	0	0	0	0	-	0	m	~	=	•	<b>6</b> 6	
15-21	8	0	0	0	0	0	0	0	¢	0	0	0	0	0	٥	18	
22-28	~	~	89	-	0	-	0	0	0	0	0	- <b>T</b>	80	~	-	66	
29-May 5	~	0	26	-	0	0	N	0	-	0	0	ŝ	₽	0	0	<u>9</u>	
6-12	0	÷	-	¢	0	0	0	0	0	2	0	0	σ	~	~	26	
13-19	-	~	m	0	0	-	0	0	0	0	0	0	0	0	_	<b>б</b>	
20-26	•	-	Q	0	0	¢	Ċ	¢	0	~	0	0	N	đ	2	17	
27-June 2	~	~	<b>3</b> 0	m	0	0	o	Q	0	t	0	-	-	-	Ģ	22	
۲. ۵	~	0	~	0	¢	0	0	¢	¢	4	0	0	0	¢	0	æ	
10-16	Ś	õ	235	÷.	0	0	m	-	0	90	0	4	9	0	0	296	
17-23	m	~	ŝ	2	0	0	٥	0	=	-	-	0	5	0	0	68	
24-30	-	0	~	0	0	-	0	0	-	-	-	0	-	0	0	œ	
July 1- 7	0	2	=	0	0	ŝ	0	0	8	-	0	o	2	0	0	6 <del>1</del>	
8-14	0	0	0	0	0	0	0	0	N	0	0	0	0	0	0	~	
15-21	0	0	0	0	0	0	0	0	2	m	0	0	0	0	0	9	
22-28	-	ŝ	0	0	0	-	0	0	63	-	4	0	0	2	0	75	
29-Aug 4	•	0	0	•	0	0	0	0	-	0	0	¢	0	0	0	-	
5-13	\$	<b>t</b>	2	Ξ	0	-	0	~	53	m	-	o	142	-	0	201	
12-18	0	2	0	0	0	¢	-	0	0	0	0	-	0	o	0	t.	
													F	otal		1066	

1791	
tes,	
ž Ž	
\$tud	
hed)	
(Di te	
La X	1
43 12	
Nori	
the	
from	
rvål	
lote	}
ekly	
ied).	
a i fi	
Tak Ide	
arvae umber	
ц Ц Ц	
nber 7 Tot	
Tota (Bas	
. 41	
e e	
Ϋ́	

Table 14. (Continued)

Date						Anopt	le l e s	pre-	u lex								
Site	2	~	~	- <b>t</b> -	Ś	ę	~	æ	<b>م</b>	2	=	12	9	1	5	1	Total
Mar. 4-10		0	0	0	0	•	0	0	0	•	-	0		0	7	•	2
21-11 21-11			c	•	•	a	c	0	0	Ģ	0	0	0	•		0	-
18-24		) a	• •	• •	0	0	0	0	0	0	0	0	0	0	0	0	0
25-31		0	0	•	0	0	¢	٥	¢	0	¢	0	0	-	0	0	-
Apr. 1- 7		• •	0	0	0	0	0	•	o	•	o	0	0	2	0	•	~
-18		•	0	0	0	¢	•	0	•	•	0	0	ð	9	0	•	و
15-21		ò	0	0	•	0	0	¢	0	0	0	0	•	•	Ģ	•	0
22-28		0	0	•	o	•	-	0	-	0	o	0	~	0	0	0	ŧ.
29-May	۰ د	0	0	0	0	0	0	Ģ	0	0	•	0	0	0	0	0	•
6-12	•	Ģ	0	Ċ	0	0	0	0	4	0	0	Þ	~	o	1	ŧ.	2
13-19		• •	0	0	2	0	~	0	•	0	•	o	¢	0	0	m	<b>a</b> D
20-26		4	¢	0	0	0	0	0	0	0	~	0	0	0	-	-	æ
27-Jur	, 2	0	-	•	t.	0	~	~	0	o	•	•	m	ŝ	~	m	ຕ
е Ч		2	-	0	•	0	0	o	•	0	1	o	0	0	Ģ	0	2
10-16		•	0	0	-	0	~	Ś	0	0	~	0	-	-	7	ŧ	œ
17-23		0	2	•	7	0	~	9	~	0	0	æ	9	m	m	0	*
24-30		~	đ	0	-	0	N	¢	4	0	m	0	m	ò	.*	-	ž
July 1- 7		-		•	•	0	თ	0	-	0	2	¢	0	m	ò	2	£
8-1 <del>4</del>		•	m	0	~	-	0	0	m	0	2	-	7	0	0	0	2
15-21		9	-	0	-	0	ŝ	0	-	0	t.	-#	4	2		ò	5
22-28		~	m	0	~	0	£	ŧ	_	Þ	~	7	t.	Ś	ŧ	m	3
29-Au	- <b>t</b> -	0	ھ	•	0	•	ŝ	ŧ.	0	ø	0	0	¢	-	0	0	9
5-1		~	-	0	0	0	2	.t	ŝ	0	'n	0	4	~	2	m	Ē
12-18		0	2	0	0	o	0	<b>.</b> 7	0	0	o	•	2	<b>.</b> †	0	0	12
															to	tal	352

72.	
6 (	
ched	
i pu	
С	
S i te	
tudy	
nt Si	
Poì	
5, 6u	
E K	
4 L F	
fro	
erval	
Inte	
ek l y	
ъ.	ed)
a be	tifi
Take	1 den
vae	ber
Ľa	Ŋ
r of	otal
Vumbe	5
tal N	ased
10	ē
.5	
Table	

		,	<del>م</del> ا ۲	ledes .	and F	sorop	hora.	-	:	2	ţ	c	ŝ	ć	-
-	و د	~	~` ~	_	_   _	-   _	-	±   ~	≏	<u>9</u>	=	<u>n</u>	<u>6</u>	50	₽ _
o	0	٥	¢	0	0	0	0	0	0	0	o	0	0	7	0
0	0	0	0	0	0	0	0	0	Ö	0	0	0	•	0	0
0	0	0	0	0	ç	0	0	0	0	0	0	0	0	2	0
0	0 0	0	0	0	0	0	0	0	•	0	0	0	0	-	0
Ċ	0	0	ð	0	0	0	0	0	•	0	0	0	0	5	_
0	0 0	0	0	0	0	0	•	0 0	•	0	0	0	•	0	2
0	0 0	0	0	0	0	0	0	0	-	0	0	0	o	•	0
0	• •	0	o	0	0	0	0	0 0	•	0	o	0	0	0	0
o	0	0	0	0	o	0	0	0	•	0	•	0	0	1	0
0	0	¢	0	0	0	0	ç	0 0	• -	0	0	0	0	ŝ	0
0	0 0	0	ō	0	0	0		0	0	0	0	0	0	•	•
0	•	0	0	0	0	0	0	0 0	0	0	•	-	-	-	o
0	0	0	0	0	0	0	0	• •	0	0	•	0	2	0	0
¢	0 0	0	0	0	0	0	0	0	0	0	0	0	0	~	0
0	•	0	0	0	0	0	¢	0 0	0	0	0	0	0	~	~
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0 0	0	0	o	0	0	0	0
0	。 。	0	0	0	0	0	0	0	0	0	D	Ģ	•	8	0
0	•	0	0	0	•	0	Ċ	0	•	¢	•	0	0	Þ	~
ò	0	0	0	•	0	0	0	0	- -	•	0	0	~	-	m,
0	•	0	ç	•	0	0	0	- -	°	0	0	-	•	56	2
0	0 0	0	0	0	0	0	0	0 0	0	-	0	o	0	<del>6</del> 6	0
0	•	0	•	0	0	0	0	0	。 。	0	0	0	0	¢	0
0	0	0	o	0	0	0	0	- -	。 。	0	0	0	0	0	¢
0	0	0	0	0	0	0	0	•	。 。	0	0	0	0	0	0
0	0	•	0	0	•	0	0	0	。 。	0	0	¢	0	0	0
0	0	0	0	0	0	-	0	0	° 0	D	0	-	œ	ŝ	÷
0	0	0	¢	0	0	0	0	0	°	0	-	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
0	0	•	0	0	o	0	0	。 。	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
¢	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	D	0	0	- 0	0	D	0	8	0	0	o

inued)
(Cont
5.
Table

Date								Ano	phe les	and	Culex											
Site No.	-	2	~	t.	5	ę	7	80	6	1 01	-	2	- -	<u>-</u>	31	-	8	5	2	5	Tot	-
Mar. 4-10	=	•	•	•	0	-	-	•	0	0	_	5	0	-	0		-	0	•	0		σ
11-17	-	0	-	0	•	0	0	0	0	o	•	•	0	- -	ں ہ	_	0	•	-	0		5
18-24	7	Ö	-	0	0	0	0	Þ	0	0	0	0	0	0	0	~	0	•	-	0		<b>~~</b> ,
25-31	m	ð	0	0	o	0	0	•	0	0	0	0	0	0		~	0	•	±	-		÷
Apr. 1- 7	0	0	•	ø	-	•	-	0	0	0	0	_	ò	0	- 0	~	0	。 -	•	•		÷
8-14	• •	0	0	0	0	0	0	0	0	0	0	0	•	0		~	0	。 -	•	0		0
15-21	0	• •	0	0	0	0	0	0	0	0	0	0	0	ċ	- 0	~	0	°	•	•		•
22-28	0	0	0	0	0	0	0	Ð	•	0	0	ò	•	0	0	~	0	。 。	•	•		0
29-May 5	œ	0	~	0	0	0	0	0	0	•	0	0	0	0		~1	0	•	-	•	_	~
6-12	17	~	17	0	~	o	0	•	0	0	0	0	0	0	- 0	~	0	•	•	。 -	-	ñ
13-19		0	~	0	0	0	•	¢	•	0	ò	0	0	0	0	~	0	•	。 。	° -		2
20-26	. 0	0	t.	-	Ξ	0	-	0	-	Ģ	0	0	0	~	- -	~	-	0	•	°		ž
27-Jun 2	đ	0	m	o	-	0	-	-	0	0	0	0	0		0	_	•	-	°	- -		<u> </u>
5	4	- 197	2	-	đ	-	¢	2	~	-	•	•	0	m	~	~	m	۰ ۵	。 。	_	-	ŧ
10-16	-3	•	37	0	ŝ	-	~	7	-	_	-	2	0	_	-3	~	2	0	_	2	-	~
17-23	¢	Ŷ	0	•	0	ð	0	0	0	0	0	0	0	•	0	0	- 0	۰ ۰	°	-		•
24-30	0	o	G	0	o	-	0	-	2	•	0	0	•	0	-	0	~	°	- -	-	_	5
July 1- 7	2	~	12	•		~	-	-	2	-	0	0	0		-	~	~	~	0 0	ي م	• -	2
8-14	~	-	5	0	-	0	Þ	0	-	7	2	0	ð		0		5		。 。	~		23
15-21	Ś	0	8	0	ĥ	-		-	0	•	0	•	•	•	•	0	~ ~	- -	°	2		e.
22-28	5	~	Ē	2	£	m	0	-	-	0	đ	æ	0	0	•	0	و	- -	_	22 	_	<u>.</u>
29-Aug 4	t.	0	2	0	~	0	7	0	2	0	0	Ċ	¢	3	2	~	•	- -	- -	~	-	œ,
5-11	0	0	ማ	•	ò	7	0	•	•	•	•	0	0	_	0	2	0	Š		<u> </u>	_	
12-18	¢	•	¢	0	0	-	-	o	0	0	•	0	ð	¢	0		0	- -	0	~	_	~
19-25	0	0	3	-	r	0	0	0	Ċ	o	0	Ģ	0	<b>~</b>	-	0	•	-	- -	-	-	21
26-Sep 1	•	o	თ	0	0	2	-	m		2	0	0	0	Ö	0	ŝ	~	- -	0	- ·		27
2-8		0	თ	9	ە	~	<b>_</b> †	2	-	0	_	2	-	~	N	ç	0	Ň		- -	-	ጽ'
9-15	0	~	•	7	0		0	-	0	0	0	~	0	-	_	_	m	õ	- -		_	58
16-22	~	•	ŝ	0	2	0	0	Þ	~	0	0	8	0	0	0	0	0	-	-			5
23-29	0	თ	0	m	o	m	0	~	0	<b>.</b>	0	7	Ģ	ŝ	0	~	-	~	- -	<u> </u>	_	¥
30-0ct 6	0	0	•	0	0	0	0	0	0	0	0	•	0	o	0	0	0	- 0	- -	0	~	0
7-13	•	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	0	- 0	- -	~ ~	_	•
14-20	0	0	•	0	0	•	0	0	0	0	•	•	0	0	0		0	_	- -	-	_	•
21-27	Q	•	•	0	0	•	•	0	0	Ģ	0	0	o	0	0	0	0	0	•	-	~	0
																			Tota	_	on.	65

Table 16. Fotal Number of Larvae Taken per Weekly Interval from Davis Study Sites (Ditched) 1972. (Based on Total Number Identified)

														1									
	Date						Acde	and S	Psor	ophore	e i												
	Site No.	2	٤	. <del>.</del>	5	1	80	6	2	=	12	Ē	- <u></u>	15	- 9	- -	<u>∽</u> ∞	 	9	21	22	23	Tutal
Ě	. th-10	0	•	0	•	0	0	0	0	-	.	0	0	。	_	0			0	-	6	6	
	11-17	0	•	a	0	¢	0	0	0	0	0	. 0	0	0		0			, ¢		• c	• c	, c
	18-24	0	Ś	0	0	0	0	0	÷	-#		·		c					, ur			) C	
	25-31	0	. 0	o	0	0	0	¢	2	2	0	0	, C	. 0	) a				~~	ç	• c	• c	3~
Åpr	7	0	•	o	0	0	0	2	0	m	0		0	0	. 0	. 0	.0			. 0	• •	• •	• =
	8- I4	•	•	0	0	0	0	0	-	m	-	0	0	0	0	0	.0		. 0	0	•	0	
	15-21	•	•	•	0	0	o	0	0	-	0	0	0	0	٥	0	- 0	0	0	0	0	0	
	22-28	o	0	0	0	0	0	0	-	•	ð	0	Ö	0	0	0	-	0	0	0	0	0	-
	29-Hay 5	•	0	0	0	0	-	0	0	Ś	0	0	0	0	0	0	-		0	0	0	0	9
	6-12	•	0	Q	0	0	0	a	0	-	0	¢	0	0	0	0	-	0	0	0	0	0	-
	13-19	<u></u>	2	Ŷ	Þ	0	0	80	0	0	٥	-	0	0	0	0	•	0	ŝ	0	0	0	37
	20-26	ø	<u>~</u>	0	0	~	-	'n	0	0	2	ŝ	0	0	0	0	- 0	0	_	0	0	0	35
	27-Jun 2	0	2	0	Ċ	~	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	Ð	4
	۰. ۹	0	¢	0	0	0	0	0	0	4	0	7	0	0	0	0	Ģ	0	0	0	0	0	¢
	10-16	0	0	0	0	¢	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0
	17-23	0	0	•	0	0	0	o	0	0	0	•	0	0	0	0	0	0	0	• •	0	0	0
	24-30	0	0	0	0	٥	0	a	0	2	0	0	-	Ð	0	0	0	0	0	Þ	0	0	~
Ę	y 1- 7	2	~	0	0	-	0	t.	0	0	7	0	0	0	0	0	0	0	-	0	0	0	Υ. Υ
	8-14	0	0	ò	0	0	0	0	•	_	_	~	o	0	0	0	0	0	0	0	0	0	5
	15-21	Ś	m,	0	0	0	0	-	0	0	0	_	-	0	0	0	0	0	Ģ	•	0	0	Ξ
	22-28	0	0	0	0	0	0	м	20	55	0	š	0	0	0	0	0	0	0	0	ò	0	<u>8</u>
	29-Aug 4	0 1	0	• •	0	0	0	0	0	_	0	0	0	- 0	2	0	0	0	0	0	0	~	Ξ
		••	0	•	0	0	0	0	~	0	0	0	-	0	0	_	0		0	_	0	0	ъ
	12-15	0 0	0 0	• •	0 (	0 (	0	0	- (	0	<u>.</u>	0	0.	0	0	0	0	ð	0	0	0	_	~
		5 (		<b>.</b> .	-	-	<b>&gt;</b> (	<b>-</b>		<b>,</b>	-	0	-	Þ	0	0	0	0	0	0	0	0	-
	20-26P	- د	• ;	э (	•	0	0	ο.	•	20	0	0	2	0	0	0	0	0	0	0	0	0	ē
	• :	- 1	<u>-</u> '	•	<b>-</b> •		<b>-</b>	t ·		0	0	on i	0	0	0	0	0	0	2	0	¢	0	37
	<u>5</u>	<b>o</b> (	0 0	0	•	0 1	- 1	1	0 1	0	0	0	-	0	¢	0	0	0	0	0	o	0	~
	77-01	- ·		-	<b>.</b>	<b>o</b> '	0	0	0	0	0	0	0	0	0	0	0	0	0	¢	o	0	0
	23-29	0	0	•	0	~	-	0	0	0	0	~	0	0	0	0	0	0	0	0	0	0	=
	30-0ct 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0	¢	0	0	0	0
	2-13	0	-	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	¢	0	¢	0	0
	14-20	0	•	0	0	0	0	0	¢	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	21-27	0	0	0	o	0	•	0	0	0	0	0	o	o	0	0	0	0	¢	0	0	0	o
																				Ť	[9]		054

panu
Conti
ت ود
ble I
1al

_

Cutex         1         12         13         14         15         16         17         13         14         15         16         17         13         14         15         16         17         13         14         15         16         17         13         14         15         16         17         18         19         20         21         22         23           1         1         1         1         1         1         1         1         1         20         21         23         23           1         1         1         1         1         1         1         1         1         20         20         21         23         23           1         1         1         1         1         1         1         20         20         21         22         23           1         1         1         1         1         1         1         1         20         21         23         23           1         1         1         1         1         1         1         1         1         20         21         23         23	00000000 00000000 000000000 0000000000
Cutex         1         12         13         14         15         16         17         23           11         12         13         14         15         16         17         18         9         20         21         23           11         12         13         14         15         16         17         18         9         20         21         23           11         12         13         14         15         16         13         14         15         16         13           11         10         0         0         0         0         0         0         0         13           11         10         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td></td></t<>	
Cutex         1         12         13         14         15         16         17         18         19         20         21           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	- 
Culex       1       12       13       14       15       16       17       18       19       20         11       12       13       14       15       16       17       18       19       20         11       12       13       14       15       16       17       18       19       20         11       12       13       14       15       16       17       18       19       20         12       5       0       0       0       0       0       0       0       0       11       12       14       15       16       17       18       19       20         11       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	
Cutex       1       12       13       14       15       16       17       18       19         11       12       13       14       15       16       17       18       19         11       12       13       14       15       16       17       18       19         11       12       13       14       15       16       17       18       19         12       5       0       0       0       0       0       0       0       0         11       10       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	
Culex       I       12       13       14       15       16       17       18         11       12       13       14       15       16       17       18         11       12       13       14       15       16       17       18         12       13       14       15       16       17       18         11       10       0       0       0       0       0       0         12       13       14       15       16       17       18         12       0       0       0       0       0       0       0         13       14       15       16       17       18         13       14       15       16       17       18         13       1       1       1       0       0       0         13       1       1       1       1       0       0       0         13       1       1       1       1       1       0       0       0       0         14       0       0       0       0       0       0       0       0	<b></b>
Culex       I       12       13       14       15       16       17         1       12       13       14       15       16       17         1       12       13       14       15       16       17         1       12       13       14       15       16       17         1       12       13       14       15       16       17         1       12       14       15       16       17         1       12       14       15       16       17         1       12       14       15       16       17         1       12       14       15       16       17         13       14       15       16       17       18         13       13       14       15       16       17         13       13       14       14       15       16       17         13       13       15       14       15       16       17         14       16       17       16       17       16       17         15       16       17       16       17	000000 o
Culex 1 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 4 5 2 3 3 2 4 5 2 7 5 2 7 5 2 7 5 2 7 7 2 7	00000000
Culex Culex 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000010000
Culex Culex 1 12 12 1 12 12 1 12 13 1 13 1 1 13 1	00-0m0000
Culex 1 100000000000000000000000000000000000	0000000 ton
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000000000
3 - 000-0-40-00704008m8=700-04	0 ~ <u>~</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
σ	000000000
8	0000+0000
	000000000000
× 000000000000000000000000000000000000	0000000
~ 0000000000-00000000000000000000000000	000000000
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	00000
*	000000000
	000000000
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b></b>
9ate 5 i te No. 11-17 11-17 11-17 11-17 11-17 11-17 11-17 15-21 15-21 15-21 15-21 15-19 22-28 22-28 22-28 22-28 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-30 10-15 27-10 10-15 27-10 10-15 27-10 10-15 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-10 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27-20 27	26-Sep   2-8 2-8 2-15 16-22 23-29 30-0ct 6 7-13 21-27 21-27 21-27

alen				Å	desa	<u>P</u>	oroph	ora							
Site No	-	7	~	t.	2	9	7	æ	თ	=	12	2	4	Total	01
- 4-10	0	0	~	0	•	0	0	0	0	0	0	0	0	~	0
11-17	0	0	0	o	0	0	0	0	0	• •	0	• •	0	Ď	0
18-24	-7	0	20	5	-	0	0	ŝ	-	•	0	0	¢	64	-3
25-31	<u>ت</u>	0	27	¢	0	0	0	ŝ	-	0	0	0	0	9 <del>1</del>	91
~- 	~ I	0	2	0	a	0	0	÷	0	0	0	0	0	24	=
<del>3</del> - - - -	ŝ	0	27		0	0	0		•	0	0	0	0	ž	N
17-61	-	<b>.</b>	2 '	-	0	0 (	0 (	0	0 1	0	•	- •	•	= '	2
22-20	• •		N -	-	0 (		0	0	0	0	•	0	0	2	-
c /6M-67	•	0	- •	•	•	0	0	-	0	0	0	¢	0	2	-
21-0		2 0	<b>.</b> .		-	•	0 4	n r	0 (	<b>•</b> •	0	0	0	n,	0
21-01	<b>.</b>	<b>,</b>	5	-	<b>-</b> (		¢ ¢	~ c	0 1	• •	0	0	0	n i	0
27- Jun 2		50		<b>-</b> -	<b>.</b>		•	<del>ہ</del> - ס	0 0	•	0 0		p t	on -	0 0
7 100-74	<b>,</b> ,	50		<b>.</b>		<b>.</b> .	• •	- ‹	2 0	•	<b>.</b>		2 4	- 4	
10-16		00		- c		<b>)</b> (		• <u>•</u>	<b>&gt;</b>		> <	5 0	<b>-</b> c	2	⇒ ¢
17-23	• •	0		• c	• c	• •	) c	2 0	• c	• c	o c	• c	<b>)</b> c	20	50
24-30	0	• •	• •	• •	• •	0	。 。	، م	00	0	0	. 0	. 0	2.5	00
v  - 7	0	0	0	0	0	¢	0	0	0	Q	0	Þ	0	0	• •
8-14	0	0	0	0	0	0	0	2	0	0	0	0	0	۲	0
15-21	0	0	0	0	0	0	0	•	٥	Þ	0	0	0	0	0
22-28	0	0	0	•	0	0	0	0	0	Q	0	Q	0	0	0
29-Aug 4	0	0		•	0	0	0	0	0	ō	0	o	0		0
5-11	0	o	თ	<b>.</b> †	•	0	0	8	0	0	0	o	æ	39	0
12-18	0	o		0	0	0	0	0	0	0	0	0	0	-	0
19-25	0	0	¢	0	0	0	0	0	Ģ	0	0	0	o	0	0
26-Sep 1	0	0	0	0	0	0	0	-	Q	0	0	0	0	-	0
2-8	o	0	0	0	0	0	0	0	ò	0	¢	0	0	0	0
9-15	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0
16-22	•	0	0	0	0	Ģ	0	0	0	0	0	0	0	0	0
23-29	0	0	0	0	•	¢	0	0	0	0	0	0	0	Ċ	0
30-0ct 6	0	0	0	0	0	a	0	0	0	0	0	¢	0	0	0
7-13	0	•	0	0	0	0	0	¢	0	0	0	0	0	0	0
14-20	•	0	o	0	0	0	0	0	0	0	•	0	0	0	0
21-27	0	0	Ģ	0	¢	c	c	¢	¢	¢	¢	c	•	¢	•
				ı	>	2	5	2	2	-	∍	∍	0	2	-

1972	
Sites,	
Study	
River	
Newport	
I From	
Interva	
Weekly	
рег	
taken	(ied)
Larvae	ldent
ġ,	) tal
Number	d on Tr
Total	(Base
17.	
Table	

.

ļ							Ì										
	Date					∢I	nophe	les a	망	lex							
	Site N	- ć	2		~	t.	\$	6	7	æ	σ	=	12	Ē	ž	Total	01
		1													.		'
Mar	4-10	0	-	0	~	_	0	0	0	0	o	0	0	Ð	o	n	9
	11-17	0	2	0	0	0	0	0	0	0	0	0	o	0	0	Ģ	2
	18-24		~	¢	0	0	0	0	0	0	0	0	•	ç	0	0	Ŷ
	25-31	. —		0		0	0	0	0	0	2	0	0	0	0	-7	æ
Aor	· ~ ·			0	- 14	0	0	0	0	0		0	0	0	0	7	2
L.	8-14	0	-	0	0	0	0	o	0	0	0	o	¢	0	0	0	~
	15-21		-	0	_	0	0	0	0	¢	0	0	0	Ģ	0	-	0
	22-28	J	- -	0	~	0	0	0	0	0	0	0	0	0	0	ň	2
	29-May 5	0	- -	0	ŝ	0	0	0	0	0	0	0	0	0	0	æ	e
	6-12	0	~	0	16	0	0	0	0	0	0	0	0	0	ç	16	.*
	13-19		- -	0	10	-	0	0	0	¢	0	0	0	0	0	-	9
	20-26		- -	0	m	~	¢	0	0	0	0	0	0	0	0	0	0
	27-Jun 2			0	÷	4	0	0	0	0	0	0	0	~	0	ñ	4
	9-9	J	- -	0	0	Ś	0	0	0	0	0	0	0	0	-	-e	ŝ
	10-16	J	0	0	~	2	0	0	0	0	0	0	0	N	0	2	4
	17-23		0	0	0	0	0	¢	0	0	0	¢	0	¢	0	0	•
	24-30	-	e	0	14	7	0	0	0	0	0	0	0	t	Ģ	20	'n
juľ	v 1- 7	-	0	0	0	2	0	0	o	D	0	0	0	0	0	2	0
	8-14		_	0	26	23	o	0	0	o	0	0	0	~	Ś	58	2
	15-21	2	0	0	8	ŝ	0	0	0	0	0	0	0	¢	0	Ξ	0
	22-28	-	0	0	21	-	0	0	0	0	¢	0	0	0	0	22	•
	29-Aug 4	_	0	0	20	ማ	0	0	ø	0	o	0	0	0	0	59	0
	5-11	-	0	0	~	œ	0	0	0	0	0	0	Q	m	0	£	Ξ
	12-18		0	0	7	æ	¢	0	0	¢	0	0	0	0	0	÷5	0
	19-25		e,	Đ	~1	æ	0	0	0	٥	0	0	٥	-	0	17	0
	26-Sep 1		0	-	40	<u>0</u>	0	0	0	0	0	0	0	12	t.	67	-
	9-15		0	0	0	0	0	0	0	0	0	0	0	2	0	61	0
	16-22		0	0	~	m	0	0	•	0	0	0	¢	0	0	9	N
	23-29		-	0	و	m	0	0	0	0	0	0	0	2	თ	21	Q
	30-0ct 6		0	0	0	0	0	0	0	0	0	0	o	0	ò	0	0
	7-13		0	0	0	0	Ģ	0	0	¢	0	0	0	0	0	ç	¢
	14-20		0	0	0	0	0	0	0	ò	0	¢	0	¢	0	0	0
	21-27		0	D	0	0	o	0	o	0	0	ð	0	0	o	0	0
													-	otal		717	15
	o dia 10 km dia 10.	1	(														
		100	e,														

Table 17. (Continued)

1971 (în percentege).
River Study Sites,
s Creek and North
Taken from Ward'
ary for Species
Survival Summ.
Table 18.

	Site No.	<u>Aedes</u> sollicitans	<u>Acdes</u> taeniorhyn- chus	Psorophora confinnis	Other Psoro.	Anophe l es atropos	Anophe les bradley i	Anopheles 2nd instar	Other Anopheles	Culex salinarius
Wards Creek Study area	-	6	16		.	'			- date	
North River							I	J	ı	•
Study area	•		03							
		2		1	•	33	50			
	n.	<u>8</u>	002		1	3	e e	•	•	•
	4	65	8	ŀ	1	3	Ŗ	1	,	
	Lin	42	5		I	, :	•	,		
		į	ł	,	ı	52	12	ı	1	
	, ,	2	•	•	1	,	101	•	•	•
	~ <	5	100	•		)nn	2	•	•	•
	20	2	1		I		33	•	•	
	ο,	0			•	\$	62	•	1	I
	ŝ	4		•	ı	0	ē			1
	2 :		3	•	•	1	' <b>,</b>	ı	•	,
	: :	2:	001	•		1		•	ı	ŀ
	2 :	2	•	,	,	c	2	•	,	8
	<u></u>	60	007	1	ı	, t	ת יי	•	•	
	<u>*</u>	92	86	•	•	23	<b>ද</b> :	•	,	100
	<u>ہ</u>	<b>9</b>	ŝ		1	22	R.	1	,	
	J6	69	1.5		• !	÷.	<del>,</del>	,	1	
	1	( <b>5</b>	3	001	00	100	•	,	1	-
	ġ	.,		,		አ አ	50	I	•	•
	2 9		3	•	,	50	85	•	•	•
	ŗ,	3:	2		•	001	2	•	• -	
	3 :	≏:	•	1		•	( <b>-</b>	,	201	,
	5 8	2	100	•	,	c	• c	•	•	•
	3	2		ı	ı	, <del>2</del>	2	•	,	
	5	<u>۾</u>	100	,	ı	8	<u>-</u>	•		,
	54	8	0	1		2 4	₽.	•	,	
	25	100			•	<b>•</b>	¥	ł	(	ŀ
	ž		I	•			50	ſ	2	,
	15	•	ı	ı	,	8	100	1	201	•
	2	•	•		,	50	11	•		1
	2 2	L	•		•	20	1	ł		•
	5	•	,	•	,	<del>1</del> 5		,	1	•
	2	ı	•	•		8	2 0	•		
							8	•		

ı

ł

Continued)	
Table 18. (	

Cute Salina	'	•	•	•	•	•	•	•	•	•	•	ı
Other Anupheles Spp.	ı	•		ı	,	ı	•	,	•	,	•	8
Anophelcs 2nd instar	,	٠	•	ı	ı	1	1	ı	•	•		•
<u>Anopheles</u> <u>bradleyi</u>	100	4P	<b>6</b> 3	80	57	54	70	73	5	<u>۾</u>	85	\$
<u>Anopheles</u> atropos	28	0	20	62	85	0	75	70	20	55	33	50
Other Psoro. Spp.	•	ı	ı	•	•	•	•	•	•	ı	•	٠
Psorophora confinnis	ı	•	ı	•	•	,	•		•	•		•
<u>Aedes</u> taeniorhyn- chus	1	•	•		•	1	ı	ı		001	001	·
<u>Aedes</u> sollicitans	Þ	001	001	,	0	,		•	,	60	100	ı
Site No.	31	32		3	2	2	37	96	39	<b>;</b>	-7	42
	dorth River	Study area										

Anopheles 2nd instar	900 · · · · 800 + 80 · C 800 - 800 · · 900 + 800 • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • 900 • • 900 • • 900 • • 900 • • 900 • • 900 • • 900 • • 900 • • 900 • • 900 • • 900 • • 900 • • 900 • • 900 • • 900 • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • • 900 • • • 900 • • • • 900 • • • • 900 • • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • • 900 • • • 900 • • • • • • 900 • • • 900 • • • • • 900 • • • 900 • • 900 • • 900 • • 900 • • • 900 • • • 900 • • • 900 • • • • 900 • • • 900 • • • 900 • • • 900 • • • 900 • • • • • • 900 • • • • • • 900 • • • • • • • • • 900 • • • • • • • • • • • 900 • • • • • • • • • • 900 • • • • • • • • • • • • • • • • •	
<u>Anopheles</u> bradleyi	00000000000000000000000000000000000000	
<u>Anopheles</u> atropos	001	
Other Psoro	1 m · · · · · · · · · · · · · · · · · ·	
<u>Psorophora</u> confinnis	· · & · · · · · · · · · · · · · · · · ·	
Other Spp.	. 88 95 8, 95. 8, 9, 9, 9, 9,	
<u>Aedes</u> at lanticus	163581183551195	
<u>Aedes</u> taeniorhyn- chus	<u>6</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<u>Aedes</u> solficitans	- 88 55 - 19 55 22 - 19 55 % - 19 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55 - 13 55	tched Sites
Site No.	※85~23456789010045%7890000	

Table 19. Survival Summary for Species Taken from Davis Study Sites, 1972 (in percentage),

. 1972 (in percentage).
Point Study Sites,
en from King's
for Species Tak
Survival Summary (
Table 20.

															,				,	I	I	
Saline Saline	Ū	•																				
Other <u>Anopheles</u> Spp.	•	•		,	•	•	•	,	•	۱		•	•	,	۱	•	•	•	•		ŀ	,
<u>Anopheles</u> 2nd instar	20	001		16	100	<b>6</b> 8	100	8	001	8	8	Ċ	0	•	<u>0</u>	ጽ	001	001	001	5	•	•
<u>Anohpe les</u> bradley ì	<del>3</del>	5	2 :	8	<u>8</u>	6	001	100	001	100	001	0	20	,	001	70	001	001	ģ	201	•	001
<u>Anopheles</u> atropo <u>s</u>	6		•	001	001	100	100	001	100	001	001		ı	ı	38	3	100	9		<b>B</b> 1	,	10
Other Psoro. Spp.			•		•	,		•		•	,	,	•	•	•	ł		•		•	•	•
Psorophora confinnis			4	•	,	•	•	1	1	•	I	,	ı	. 1		,	•	1	I	•	•	•
Other Aedes Spp.	2	3	ı	001	•	•		1	ı			8	3	1						001	•	1
<u>Aedes</u> at lant i cus		•	٠	ı	ı			• •					<b>L</b>	•				•	•	•	•	•
<u>Aedes</u> taeniorhyn- chus		8	ı	100		• •	1	•	•		•	•	•	•			1		8	•	100	80
<u>Aedes</u> soliicitans		8	•	100	3	•	•	•	•	•	•	•	•	,	•	•	• 1	001	,	001		5
No.			~		<u>م</u> 2	t i	<u>~</u>	01	~ 0	• •	n i	2:	= :	N	<u>n</u> :	<u>±</u> :	<u>_</u>	2	-	80	2	n ç

ther be						0	0				•	0		,
Si Co		•				0	0		20	,	0	0	,	
terri		•	1	•	•			•		•			•	•
<u>Culex</u> salinarius	•	•	100	,	,	0	•	,	۰	100	o	o	001	001
Other <u>Anopheles</u> Spp.	•	•	ı	ı	ı	0	0	٠	•	•	•	0	,	ı
<u>Anopheles</u> 2nd instar	100	ł	70	001	•	0	0	•	•	001	0	D	8	001
<u>Anopheies</u> <u>bradleyi</u>	83	001	<u> 9</u>	100	•	0	•	•	100	82	o	0	<b>8</b> 6	60
<u>Anopheles</u> atropos	001	,	£	100	•	0	0	•	•	5	•	0	33	100
Other Psoro. Spp.	1	,	ı			0	¢	٠	1	•	0	0	•	•
<u>Pserephora</u> co <u>n</u> finnis	1	•	ı	•	•	0	0	100	•	•	0	0	•	ı
Other <u>Aedes</u> Spp.		•	,	•	¢	•	0	6	•	00	0	0	•	ı
<u>Aedes</u> at lan tiçus	ı	•	•	•	•	0	0	•	٠	•	•	0	•	•
<u>Aedes</u> <u>taeniorhyn</u> - chus	1	,	<b>6</b> 6	•	•	0	•	38	•	001	٥	•	100	ı
<u>Aedes</u> s <u>ollicitans</u>	100	•	8	8	•	0	0	2	20	ቼ	0	0	2	87
Site No.	-	2	~	÷	ŝ	ە	~	œ	σ	5	=	12	ŝ	1

1972 (in percentage).
River Study Sites,
ken from Newport
/ for Species Ta
Şurvival Summarı
Table 21.

Munditched Site
0ate Light trap wk.	No. of Nights light trap in operation	<u>Aedes</u> sollicitans	<u>Aedes</u> <u>taeniorhyn-</u> <u>chus</u>	<u>Anopheles</u> atropos	<u>Ancphe les</u> bradlevi	<u>Culex</u> salineri <u>us</u>	<u>Psoropi</u> confini
Aug. 5-11	6	0.62	16.0	912		6.0	7
12-18	L.	43.0	0,06	1306	143	12.0	හ
19-25	. ~	25.0	35.0	537	117	34.0	36
26-5e0	_	23.0	40.0	685	127	0.0	<b>م</b>
2-8	- un	23.0	39.0	680	118	0.0	62
9-15		0.4	0.01	213	66	6.0	4
16-22	<b>t</b>	38.0	19.0	125	127	8.0	12
23-29	m	8.0	0.8	20	20	2.0	4
30-0ct 6	~	22.0	12.0	523	ñ	0.E	2
2-13	. ~~	0.7	0.33	8	Ś	0.0	o
14-20	~	0.1	0.33	ŝ	Ś	0.0	0
21-27	-3	0.1	0.5	102	₽	0.25	0
28-Nov 3		12.0	0	294	ž	1,0	0

Mean Number of Adults Taken per Light Trap Night per Weekly Interval at the North River Light Trap, 1970. Table 22.

Species		August	September	October	November	Four Month Total
bertac						
	SOLETCICATS	294	302	78	12	Act.
Acues	Taen torhynchus	654	326	č.	-	1 020
Aedes	atlanticus	0	G	\ <b>C</b>	- c	070'1
Psorophora	confinnis	211	370	<b>,</b> , ,	5 0	•
Anophe les	atropos	13 760	4 600		э. ¦	597
Anophe les	bradlevi			۲, iUY	762 7	20,852
			555	158	5	2.843
	SPI JPU LOS	P	5	ማ	_	226
Total for Eau	ch Month	16.571	7 100	00-1		
			<b>C</b>	00+'7	362	26.392
		Relative	Species Abundan	ce %		
Species			Femporary Pool B Aedes and Psor	reeders P ophora	ermanent Pool Anonheles	Breeders and Culey
Aedes	sollicitans	3.2	I			
Aedes	taeniorhynchus	9.5				
Aedes	atlanticus	0.0				
Psorophora	confinnis	2.3	-1 0		, ua	
Anophe les	a tropos	0.67				
Anophe les	bradleyi	10.8				
<u>Culex</u>	salinarius	0.8				
Total		0 001				

Table 23. Total Number of Adults Taken per Month at the North Biver Sicht Ican 20

								i		
Light	Date : trap w	ee k	No. of nights light trap in operation	<u>Asdes</u> sollicitans	<u>Aedes</u> <u>Saen iorhynchus</u>	<u>Aedes</u> atlanticus	<u>Anophe les</u> atropos	Anopheles bradleyi	<u>Culex</u> <u>salinarius</u>	<u>Psurophura</u> confinnis
15	25-Har	-	~				0.33			
Lev	÷	2						0.28		
	<u>_</u>	27	~ r				3.10 0.28	9.70 14		
	<u>- </u> ,	t 7	- ~				3.60	2.30		
Aor	÷ ۲		. ~				0.57	0.7)		
	5	· <u>†</u>	. ~				- <del>1</del>	3.60		
	<u>.</u>	21		0.85			21,00	14.30		
	22-	<b>5</b> 8		0.28			22.00	14.00		
	29-May			1.00			3.60	3.00		
	6	2	. ~	5.50	0.43		22.40	2 70		0.14
	- <u>-</u> -	<u>s</u>	. <b>.</b> .	0.85	0.14		32.80	07.71		0.14
	2	26		1 60	0.28		39.00	23.70		0.28
	27-Jun	1		1.30	1.10		81.00	37.00	0.85	1.40
	, ,	. <del>.</del>	. ~	7.80	04.61		145.00	45.00	2.30	10.50
	, ج	<u>'</u>		2.00	5,00		117.00	58.00	3.60	6.30
	:		. ~	0.28	1,00		97.00	50.00	0.43	0.71
	-+-2	2		7.00	7,00		360.00	85 00	1.70	6.00
2				10.20	7.00		365.00	00.661	5.70	3.60
	- œ	<u>+</u>	. ~	04.91	13.00		199.00	138.00	12.10	39.00
	· <u>-</u>	5		28,30	50.00		470.00	221.00	15.00	23.70
	2	8		9.70	28,10		587.00	333.00	00 [°] 6	15.70
	29-Auo	- -	<b>.</b> F*	7.50	15.40		380.00	253,00	13.50	23.40
		=		3 20	12.40		273.00	194.50	35.00	00.61
	·5	8	. e	8,00	15.50		226.00	168,00	31.00	11.50

Table 24. Mean Number of Adults Taken per Light Trap Night per Week at the North River Light Trap. 1971.

Species	March	April	γeM	June	עוטנ	August	Six Month Total
iedes sollicitans iedes taeniorhynchu	0 50	കറ	66 66	146 230	5 16 752	95 221	831 1 209
<u>nopheles atropos</u> <u>nopheles</u> bradleyi	ا ئىڭ	348 242	865 449	4.994 - 714	13,013	3,484 2,867	22,729
ulex salinarius	0	0	4	58	365	1466	668
otal for Each Month	70	598	1,390	7,142	22, 164	7,133	38.497
	Relat	ive Speci	es Abundance %				
Species			Temporary Poo <u>Aedes</u>	l Breede	L S	Permanen t Anopheles	Pool Breeders and <u>Culex</u>
tedes sollicitans tedes taonurhynem Puppheles atrupus Impheles bradley Lulex salinarius Lulex	2.2 3.1 59.1 33.3 2.3 2.3		£.2			ő	

Da	le	Time (P.M.) of count	Aedes sollicitans	Aedes taeniorhyn- chus	Anopheles atropos	Anopheles bradleyi	<u>Culex</u> salinarius	<u>Psogephora</u> confinnis
						11	2	
June	2	8:30- 9:00	7	13	12	4	2	3
	*	8-45- 9-15	2	20	8	7	20	i i
	10	8-30- 9-00	13	44	24	10	14	8
	15	8:30- 9:15	7	9	42	17	11	ł
		9 15 - 9:45	<u>í</u> ,	6	22	9	4	2
	17	9:30-10:00		2	25	2	2	
	20	9:00- 9:30	74	48	36	13	5	1
		9:30-10:00	14	10	29	6	9	1
	22	9:00- 9:30	21	7	33	) 2	1	
		9:30-10:00	3	4	55	23	,	1.
	25	9:00- 9:30	8		29	10	<b>D</b>	4
		9:30-10:00	4	3	31	7	4	
		10:00 <b>-10:30</b>	1	7	18	4	2	3
	27	9:00- 9:30			1			,
		9:30-10:00		•	5		1	
	z8	8:30- 9:00	1	ر ۲	17	12		28
		9:00- 9:30	23	45	4	12		12
		9:30-10:00	4	0 4	16	8	3	4
		10:00-10:30	1	2	10	6	í	2
July	5	8:30- 9:00	2 h	у Ц	23	ň	6	13
		9:00- 9:30		2	23	4	2	6
		9:30-10:00	,	;	16	4	4	9
		10:00-10:30	2	-	24	6	1	5
	12	8-30-9-00	10	7	1	3	1	14
	13	9.00-9.30	ŝ	ģ	4	ī	4	56
		9-30-10-00	6	i	5	2	3	34
		10:00-10:30	2	1	5	2	3	14
		10:30-10:45	_		6	3		3
	15	8:30- 9:00	1	10		10	3	5
		9:00- 9:30	13	3	21	2	14	38
		9:30-10:00			14	1	16	4
		10:00-10:30			6	1	2	2
	21	8:30- 9:00	1	I	2	7		2
		9:00- 9:30	I		20	-	0	2
		9:30-10:00			14	1	2	1
		10:00-10:30			22	4	2	1
	23	8:00-8:30	1			2	<b>ر</b>	
		8:30- 9:00				د ا	2	2
		9:00- 9:30	1	2	11	2	ĥ	•
		9:30-10:00	-	•	5	4	ц. С	
	26	8:30- 9:00	4	4	16	- 4	24	8
		9:00- 9:30	3	1	17	í.	13	
		9:30-10:00	4	i		5	6	
۸.	n	8,30, 0,00	1	1	Í	-	1	
Aug	"	0:30- 9:00	•		15		6	3
		9:00- 9,00			4	1	5	1
		10:00-10:30			3			
		10.30-11.00	0	0	Ō	0	0	0
	4	8-30- 9-00	-	2	2	2	1	
	•	9.00-9.30			4		8	4
		9:30-10:00			2		3	6
		10:00-10:30			5			ر
		10:30-11:00			3			2
	9	8:30- 9:00	2	1	3		4	У
	-	9:00- 9:30			8	1	1	
		9:30-10:00			7	3	ړ	2
		10:00-10:30	1	I	ļ		2	4
	11	8:30- 9:00		3	6		1	,
		9:00- 9: <b>30</b>			2			<u>د</u> ۱
		9:30-10:00	1	I.	/			,
		10 00 10.20			2			

Table 26. Total Number of Mosquitoes Taken Biting per Thirty Minute Interval at North River Study Area, 1971.

· · · · – –

Species		June	γίωι	Augus t	Three Month Tutal
Aedes Aedes Anopheles Anopheles Culex	sollicitans taemiorhynchus atropos bradleyi salinarius	195 222 442 162 86	65 9 5 5 6 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5	20×20×20	259 280 770 282 282
Total for Eac	ch Month	701,1	622	8	1,860
		Relativ	e Species Al	bundance X	
\$pecies			Tem	porary Pool Bre <u>Aedes</u>	eders Permanent Pool Breeders <u>Anopheles</u> and <u>Culex</u>
<u>Aedes</u> <u>Aedes</u> <u>Anopheles</u> <u>Culex</u> Total	sollicitans taeniorhynchus atropos bradleyi salinarius	13.9 15.0 41.4 14.5 15.2 100.0		28.9	1.17

Table 27. Total Number of Adult Mosquitoes Taken per Month During Biting Counts at Nurth River, 1971.

Date Light Trap week	No. of nights light trap in operation	<u>Aedes</u> sollicitans	Aedes taeniorhyn- chus	<u>Aropheles</u> atropos	Anopheles bradleyi	Culex salinarius	Psorophure confinnis
Aa C)	ę	32	œ	121	7	<b>-</b> 7	-
81-C - 604	• ~	(† 1	15	162	32	<b>.</b> 7	0.3
36-01	- 40	63	17	185	32	2	9
15-61 36-60-1	, <b>-</b>	06	28	100	27	_	ŝ
1 dac-07	<b>~</b> U	20	8	83	~	2	-
5-7 0-12	• • <b>•</b>	9		53	20	~	2
16-21	5 <b>-</b> 0	<u>ب</u>		52	<u>°</u>	-	~
23-29	• •	9	æ	32	~	9.0	0.5
30-Oct 6	~~	0	2	~	0	0.5	
7-13	2	0	0.5	=	0	0	0 0
14-20	~	-	•	- <b>t</b> -	0.67		5
21-27	-	13	1	35	0.5	۵	Э
28-Nov 3	0	,	I	,	•	ı	•

Table 28. Mean Number of Adults Taken per Light Trap Night per Week at the Williston Light Trap, 1970.

\$ pecies		Argust	September	October	Three Month Tolal
<u>Acedes</u> <u>Acedes</u> <u>Psorophora</u> <u>Anopheles</u> <u>Culex</u> Total for Eac	sollicitans taeniorhynchus confinnis arropos bradleyi salinarius th Month	920 340 62 5,273 532 71 5,198	276 222 30 31 228 23 228 60 1,737	7 2 0 Q 4 ~ E	1.213 574 574 4.267 764 138 7.048
		Relati	ve Species Abur	dance %	
Species			Temporary Po <u>Aedes</u> and	ool Breeders <u>Psorophora</u>	Permanent Pool Breeders <u>Anopheles</u> and Culex
<u>Aedes</u> <u>Aedes</u> <u>Psorophora</u> <u>Anopheles</u> <u>Aulex</u> Total	so) i citans Laen jorhynchus confinnis atropos bradleyi solinarius	17.2 8.2 8.1.3 60.5 2.0 2.0	ž	r.	73.3

1970.
Trap,
Light
liston
the Will
From
Month
рег
Taken
Adults
of
Number
Total
Table 29.

liston	
the Wi	
at	
Veek	
per	
ap Night	
Ē	
Light	
Per	
Taken	
Mosquitoes	
u } t	
f Ad	971
5	7
NULD	t Trac
Mean	Light
ЗÖ.	
Table	

of cichts
ö
o
ġ
0.
0
0
_
2.
-
`
ē
<u>°</u>
~
0
. <b>.</b>
Ϋ́
<u>ت</u> ز

Species		March	April	May	June	yl vL	August	September* October*	Six Honth Total
Aedes	sollicitans	0	± (	= =	89	249 246	200		532
Actes	taensornynchus at lant i rus			20	ရိင		20		, -
Psorophora	confinnis	0	• •	<b>م</b> ا	2	75	24		901
Anophe les	atropos	0	<u>†</u>	32	227	1,265	172		1.710
<b>Anophe Les</b>	bradleyi	2	25	238	234	111	227		1.503
Culex	<u>salinarius</u>	-	<b>=</b> 0	22	8	£	122		788
Total for Each	Honth	•	5	321	607	3,195	802		4,979
Species					Ten A	porary Pc edes_and	ol Breeders <u>Psorophora</u>	Permanent Pool B Anopheles and <u>C</u>	Breeders C <u>ulex</u>
Acdes Acdes Acdes Psoruphora Anopheles Culex Total	sollicitans taeniorhynchus etlanticus confinnis bradleyi selinerius	10.7 6.8 6.8 2.0 3.4:4 30.2 15.8 15.8				19.6		80.4	

+
Ξ
6
-
-
9
Ē.
Ē.
5
Ξ.
_
5
چ
-
-
5
5
Ľ.
-
2
12
5
Ĩ
L
ų.
a
c
-9
Tō.
F
10
×.
۲ <u>۲</u>
-
금
ň
2
*
<u>.</u>
5
τğ.
<
-
0
ς.
ē
ę
5
z
-
័
Ē
•
Ξ.
۵
2
-

"Light trap not in operation during these months

			•						
46:3	Date t tråp eek	No.of nights Light trap in operation	<u>Aedes</u> sollicitans	Aedes taeniorhyn- chus	<u>Aedes</u> at <u>lanticus</u>	Anophe les at ropos	Anopheles bradleyi	<u>Culex</u> salinarius	Psorophore confinnis
Feb	25-Mar	3 7							
•	4-10	7				5.0	0 67	0 70	
	11-17					10.0	0.20	0.80	
	18-24 36-21	~ v				0.28	0.57	0.28	
401	, r.	. <b>.</b>					0.66	0.19	
	- 1 6	) r-				0.14		0.43	
	12-51		0.43				-	5	
	22-28	•				t <u>;</u> ⊃ o	2.2	2	
	29-May	5 7	0.70				20.0		
	6-12	~	0.59			0, 20	0.0		
	13-19	~	0,43	0.14		0.70		2 2	
	20-26	-	0.43	0.28		0.28	3.30	4.30	
	27-Jun	2 7		-		04	01 1	10 50	04 01
	و م	~	2.70	0.43		07.0			
	10-16	~	27.00	8.30	12.40	8.6 6	20.62		33
	17-23		13.70	2.40	1.70	10,60	16.50	00.2	
	24-30	. ~-	2.70	1.40		4,10	4.30	00.1 1	9
1	, - - -		00° †	4.70	2.00	4.10	15.30	1.50	
,	α 1 - α		5,00	6,00	2.00	2.00	8.70	2.30	00 ⁻ 7
	16-21		0.57	1.50	0.43	0.28	0.70	2,40	0.28
	30-00		16.00	5.40	3.10		2.00	1,40	₽. 6
	09-97		02.6	3.00	0.43		0.43		2.70
		~ r		4.30	1,00	1.10	2.50	0.70	8
		• *	10.05	64,00	2.10	6.00	14.30	2.00	04.81
			15,00	20.00	0.28	00.6	14.00	1.30	2.70
	26-Sen		12.70	33.00	0.28	10.50	2.60	2.00	2.00
		•							

Table 32. Mean Number of Adult Mosquitoes Taken per Light Trap Night per Week at the Davis Light Trap, 1972. 133

Date Líght trap week	No. of nights light trap in operation	<u>Aedes</u> sollicitans	<u>Aedes</u> <u>taeniorhyn-</u> <u>chus</u>	<u>Aedes</u> atlanticus	<u>Anopheles</u> atropos	<u>Anopheles</u> bradleyi	<u>Culex</u> salinarius	Psurophora confinnis
Sep 2-8	1	30.00	54.00		6.00	14.30	0,28	0.28
9-15	7	10.00	12.00		6.00	16.00	3.70	
16-22	7	27,00	62.00		39.00	29,00	3.30	017
23-29								
30-0ct 6								
7-13								
14-20								
21-27								
28-Nov 3								

		March	April	May	June	۲ul	Augus t	September	0ctober	Eight Mont Tot <b>a</b> l
des	sollicitans	Ģ	~	15	340	167	646	545	76	1,692
des	teeniorhynchus	0	0	n i	156	2	1,169 3	1,066	327	2,831
<u>ا</u> بًا	at lant icus	00	00	00	515	100	<b>9</b> 2	<del>1</del> 2	- ~	823
oroprora opheles	atropos	ف ر	×~	2	8	19	216	500	66 6	640.1
ophe les	bradleyi	<del>م :</del>	12 77	₹.¥	66 96	83 17 17	488 41	469 59	134 21	1.667
ta) for E	sch Month	- 5	1	S €	1,956	560	2,777	2,594	660	8,700
Specie	10				Tempor	ary Pool 5 and <u>Psc</u>	Breeders <u>prophora</u>	Permaner Anophel	t Pool Bre les and <u>Cul</u>	eders ex
Specie edes edes sorrophora nopheles ulex	s sollicitans taeniorhynchus atlanticus oronfinnis bradleyi salinarius	19.2 19.2 19.2 19.2 5.2	ative Spec	cies Abu	ndance % Tempon Aede:	63.5	Breeders orophore	Permaner Anophel	it Pool Bre les and Cul 36.5	a a a a a a a a a a a a a a a a a a a
[otal		0.001								

2
5
Trap,
Light
Davis
the
ĕ
Honth
per
Taken
ui toes
Mosqu
Adult
٥f
Number
N.
. Tol
5
U
ę

Date	Time (P,M.) of count	<u>Aedes</u> sollicitans	Aedes taeniorhyn- chus	<u>Aedes</u> <u>etlanticus</u>	Anopheles atropos	Anopheles bradleyi	<u>Culex</u> sal.	<u>Psoro.</u> con,
June 2	8:00- 8:30	1			· · · · ·			
	8:30- 9:00	1	1	1		2		
	9:00- 9:30	2	2		I	۹ ٩		
	9:30-10:00					-		
June 5	8:00-8:30	I	I	19				1
	0:30- 9:00		2	3		4	1	•
	9:00- 9:50		4	2	5	13		I
June 9	8-00-8-30							
	8:30- 9:00		•					
June 12	8:00- 8:30			4				
	8:30- 9:00	1	1	•		1		
	9:00- 9:30	1	1		2	ı. İ.		
	9:30-10:00				-			
June 15	8:00- 8:30		I	7				t
	8:30- 9:00	3	5	5				
	9:00= 9:30	10	4	1	2	1		
June 20	8:00- 8:30	2			3			
	8:30-9:00	U	U 1	0	Q	0	0	0
	9:00- 9:30	1	,					
	9:30-10:00	·	•					
June 28	8:00- 8:30		2	3				
	8:30- 9:00	ł	ī	ĩ				
	9:00- 9:30	1	2			2		
	9:30-10:00	O	0	0	0	0	0	0
July 3	8:00- 8:30	•						-
	0:30- 9:00 9:00- 9:30	3	,	1				
	9:30-30:30	10	¢.		;	-	1	
July 7	8:00- 8:30		2			Į		
	8:30- 9:00		-	2				
	9:00- 9:30	0	0	n n	n	0	^	^
	9:30-10:00	0	0	ō	õ	õ	ň	0
July 10	8:00- 8:30	0	0	0	ò	õ	õ	ñ
	8:30- 9:00		1	E.		-	ĩ	Ŷ
	9:00- 9:30			1	2	2		
1014 17	9:30-10:00	~	4	_		2		
5019 17	8·30- 9·00	0 h	20	0	0	0	0	0
	9:00- 9:30	12	20		i c			
	9:30-10:00	12	4		2			4
July 26	8:00- 8:30		i	3	-			
	8:30- 9:00	2	7	í		2		1
	9:00- 9:30	8	10			-		
	9:30-10:00	4	2			I		
Rugi Z	0:00- 8:30 8:30, 0:00		2	4				
	0:30- 9:00	4	22	7	1	2	4	1
	9:30-10:00	2	1		I	2		
	10:00-10:30	I	+			7		1
lug. 7	8:00- 8:30	1	7		I.	-4		
	8:30- 9:00	46	36			1		
	9:00- 9:30	18	6	1		,		7
	9:30-10:00	3	3	•	4	5		2
lug. 14	8:00- 8:30	5	27	I		-		
	8:30- 9:00	1)	28					
	9:00- 9:30	4	15			16		
	3:30-10:00	4	3			7		

Table 34. Total Number of Adult Hosquitoes Taken per Thirty Minute Interval During Biting Counts at Davis, 1972.

Table 34. (Continued)

	Va(¢	of count	sollicitans	taeniorhyn- chus	atlanticus	atropos	bradleyi	<u>sal</u> .	<u>con</u> .
Aug	25	8:00- 8:30	3	60		2			
		8:30- 9:00	1	45		8	,		
		9:00- 9:30		27		3	~		
		9:30-10:00	4	15		2	4		
Aug	30	8:00- 8:30	25	54		1			
		8:30- 9:00	4	17		9	1		
		9:00- 9:30		10		6	4		
		9:30-10:00		1		4	,		
Seo	8	7:30- 8:00		4			_		
F	-	8:00- 8:30	1	4			2		
		8:30- 9:00					!		
Sec	12	7:30- 8:00	26	33	1		1		
	•-	8.00- 8:30	7	20	1		_		
		8:30- 9:00	6	7		1	5		
Sen	26	7:00- 7:30	7	31					
9-p	••	7.30- 8.00	3	22					
		8:00- 8:30	ī	8					

.

Species		June	YluL	August	September	Four Month Total	4
Aedes Aedes	<u>sollicitans</u> taeniorhynchus	26 30	5.4	137 379	53 29	271 612	i i
<u>Aedcs</u> Psorophora	at lanticus confinnis	4	שה		~ 0	69	
Anopheles Anopheles Culex	atropos bradleyi salinarius	22-	2007	- 2 5	-00	68 122 4	
Total for Eau	ch Month	169	165	630	-194	1,158	
		Rela	tive Speci	es Abundance	7		
Species			F	emporary Pool <u>Aedes</u> and <u>Ps</u>	Breeders <u>orophora</u>	Permanent Pool Breeders <u>Anopheles</u> and <u>Culex</u>	
Acdes Acdes Acdes Psoruphora Anupheles Culex Total	sollicitans taeniorhynchus atlanticus confinnis atropos bradleyi salinarius	23.4 8.28 6.0 6.0 0.0 0.0 0.0 0.0 0.0 0.0		83.2		. 16. . 8	_

Table 35. Total Number of Adult Mosquitoes Taken per Month During Biting Counts at Davis, 1972.

Mean Number of Adult Mosquitces Taken per Light Trap Night per Week From the Newport River Light Trap, 1972. Table 36.

Ligh	Date 1 Irap week	No. of nights Light trap in operation	<u>Aedes</u> at lanticus	<u>Anophe les</u> <u>atropos</u>	<u>Anopheles</u> <u>bradleyi</u>	<u>Culex</u> salinarius
					2	02 I
ee.	25-Mar 3	m		8	8.	
	01-7	t.		0.50	0.25	0.50
	11-17	7				0,43
	18-24			0.28	0.43	1,60
	15-25			<b>4</b> 1.0	0.28	1.80
A 0.5		. ~		0.14		0.43
	71-8			<b>1</b> 1 0	0.28	0,14
				0.28	1. D	0.43
	- 7- F-					11 [°] 0
	30-4-C				1,14	0.43
	C Yen-42	- F		1 1	0.14	
	7-9	~ 1				
	13-19	~ '			0 1 6	0 28
	20-26		07.0			
	27-Jun 2	Ŀ			60 4	-
	ۍ <del>،</del> ۳	e,	0.17		Co. D	20.1
	10-16	~				
	17-23	Ś				
	24-30	1				
Jul	y 1-7	¢				
	8-14					
	15-21	÷				
	22-28	2				
	29-Aug 4					
		~			-	
	12-18	ł		0.14	<b>t</b> .	
	19-25	7				
	26-Sep 1	÷				

	L	
	L	
	i i	
	L	ļ
	Ł	
	Ł	
	L	
	1	
	Ł	
	1	
	1	
	t	
	E	
		Î
	L	
	L	
	۰.	

Table 36. (Continued)

•			-	•		
l dei J	Jate : trap week	No. of nights Light trap in operation	Actes at lant icus	Anopheles atropos	bradleyi	<u>salinarius</u>
daş	2- 8 9-15 16-22 23-29 30-0c1 6 7-13 14-27 28-Nov 3 28-Nov 3			0.33		

1972.
ſrap,
jht
ēr∟
Riv
Newport
the
From
Month
per
Taken
toes
i u bsah
ult I
f Ad
er o
N umbe
Tota
37.
Table

Species		March	Aprīļ	Мау	June	γlut	August	September	October	Eight Month Total
Aedes Aedes Psorophora	soilicitans taeniorhynchus atlanticus confinnis	0000	0000	0000	0000	0000	0000	0000	0~0-0	000-4
Anopheles Anopheles Culex Total for Eav	atropos bradleyi salinarius ch Month	6 445	4 2 2 4	₩ <b>4</b> ₩ 5	-~8 6			-0-t	t 0~0	8 253
Species		Re	lative Spe	cies Abu	Tem k Tem Tem Tem	porary Pr edes and	ool Breede Psorophor	rs Permar a Anop	tent Pool B	reeders ulex
Acdes Acdes Psorophora Anopheles Culex Total	sollicitans taeniorhynchus atlanticus confinnis bradleyi salinarius	0.0 3.0 1.0 1.0 1.0 22.5 55.1 55.1				ف	_		93.9	

Date	Time (P.M.) of count	<u>Aedes</u> <u>sollicitans</u>	<u>Aedes</u> taeniorhyn- chus	<u>Aedes</u> atlanticus	Anopheles atropos	<u>Anopheles</u> <u>bradleyi</u>	<u>Culex</u> sal	<u>Psoro</u> . <u>Con</u> .
June II	8:00- 8:30		-					
	8:30- 9:00	4	1		5	8	15	1
	9:00- 9:30	1			4	6	15	
June 6	8:00- 8:30			1 I			_	
	8:30- 9:00		2	2	I	3	6	
	9:00- 9:30	1	2			7	19	2
	9:30-10:00					3	5	1
June 12	8:30- 9:00	1				19	8	1
	9:00- 9:30			1		21	21	1
June 15	7:30- 8:00			1				
	8:00-8:30		1	7			1	
	8:30- 9:00		8	14			2	
	9:00- 9:30		2	1		3	3	
	9:30-10:00		2			4		
July 8	8:00- 8:30	0	Û	0	a	0	0	0
-	8:30- 9:00		3					
	9:00- 9:30	1					4	
	9:30-10:00	C	0	0	0	0	0	0
July 18	8:00- 8:30							
•	8:30- 9:00	2	4			1	4	
	9:00- 9:30	3	6			3	3	I I
July 31	8:00- 8:30	ĩ	10				1	2
	8:30- 9:00						I I	
Aug 3	8-00-8-10			ł				
	8-30- 9:00	1	11	2		1		
	9:00- 9:30	2	4	ł		4	4	
	9:30-10:00	•	3			5		1
Aug 12	8-00-8-30	8	ż					
	8-30- 9:00	17	6			I.	2	
	9:00-9:30	4	ī		1	6	I	
	9:30-10:30	2	2		5	10	5	I.
Aug. 24	8.00-8.30	2	8		ī	2	Í	
	8-30- 9-00	-	-		3	2	2	
	9.00-9.10		1		-	3		
Sen 2	7:30-8:00		•			ĩ	3	1
200 2	8.00- 8.30						7	4
	8.30+ 9:00				4		2	
Sug 11	7.30- 8.00	6	10	10	•	2	Ī	
ach ti	8.00-8.30	ž	, <u>, ,</u>			ī	4	
	8.30-0.30	,	•		4	11	3	1
C	7,00, 7,70	6		11	-		-	
30p 20	7.00-7:30	v	2	6			1	
	8:00- B:10		,	•	1	5	3	
	0:00- 0:30						1	

Table 38. Total Number of Adult Mosquitoes Taken per Thirty Minute Interval During Biting Counts at Newport River, 1972.

Species		June	ylut	August	September	Four Month Total
Aedes	sollicitans taeniorhynchus	~ 00	23	38.5	ð 4	12
<u>Aedes</u> Psor <u>o</u> phora	<u>atlanticus</u> confinnis	27	0 m	и	27 6	58 18
Anophe les Anophe les	<u>atropos</u> bradleyi	0 Q	0.7	<u>2</u> *2	20	31
Culex	salinarius	66	13	15	12	139
Total for Ea	ch Month	238	50	Ŧ	106	538
		Relat	ive Specie	es Abundance	*	
Species				Temporary <u>Aedes</u> an	Pool Breeders d <u>Psorophora</u>	Permanent Pool Breeders Anopheles and Culex
Aedes Aedes Aedes Psorophora Anopheles Culex Total	sollicitans taeniorhynchus atlanticus confinnis atropos bradleyi salinarius	13.2 17.3 3.3 5.8 23.8 25.8 25.8		£.	ور +	55.4

Table 39. Total Number of Adult Mosquitoes Taken During Biting Counts per Month at Newport River, 1972.

Date	4	No. of nights	Aedes	Aedes	Anopheles	Anopheles	Clex	Psoroohora
ight ti	rap week	Lìght trap in operation	<u>sollicitans</u>	<u>taeniorhyn-</u> chus	atropos	bradłeyi	salinarius	confinnis
eb 25.	-Mar 3	7						
a. 4	01-	~						
É	-17					96 0		
ė	-24							
Ż.	-31	. ~			71 U			
, i L	` ~	. ~					41.0	
ó	4-							
Š	-21		0.14					
22	-28	. ~						
<b>3</b> 9	Hay 5							
فت	-12	7						
Ė	61-	. ~						
20.	-26	~						
27-	-Jun 2	~	41.0					
Ŵ	<b>ნ</b> .	~	1.6					
≙	·16	7						
ċ	-23	7						
訦	-30	~		0.28			0_1t	
 	~ .	-						
ċò	<u>†</u>	-		0.14		41 0		
ŝ	-21	2	0.43		41 O			
22.	-28	~	1.0	0_14			4 C	
5; 5;	4 9 u 4-		-1-0	0.7	2.7			
ት		7		•			410	
12.	-18	7	1.8	0,28	- 1	0.14		
₽	-25	7	0.43	0,14	0.7			
Şç.	-Sep l	7		0.8	410			

Table 40. Mean Number of Adult Mosquitoes Taken per Light Trap Night per Week at Atlantic Beach, M. C., 1972.

Light	làte trap week	No. of nights Light trap in operation	Aedes sollicitans	<u>Aedes</u> taeníorhyn- chus	Anopheles atropus	<u>Anopheles</u> bradleyi	<u>Culex</u> salînarius	Psorophora confinnis
	2- 8 2- 8 16-22 16-22 30-29 30-29 30-29 30-20 14-20 21-27 21-27	~~~~	0 0	0.28 0.14 0.14	0.43	0, 34 7.4 0, 28 0, 14		

Table 40. (Continued)

Trap,
Light
Beach
Atlantic
the
at
Nonth
per
Taken
osqui toes
Adult M
of
Number
Total
Table 41,

1972.

Species		March	April	Hay	June	y i u l	August	September	October	Eight Month Total
Aedes Aedes Aedes Anopheles Anopheles Culex Total for Eac	sollicitans taenicrhynchus atlanticus confinnis bradleyi salinarius th Month	0000-m0 <del>1</del>			<u>8</u> 80000- <u>2</u>	4m00 0	25 25 25 25 25 25 25 25 25 25 25 25 25 2	4 0 0 % 4 6 <b>%</b>	<u>+</u> 07000mm	25 22 0 0 25 29 19 20 0 0 25
Species		R.	lative Spe	cies Abu	ndance % Tempor	ary Pool and Psou	Breeders rophora	Permane Anophe	nt Pool Bi les and Cu	reeders ulex
Actors Actors Actors Actors Actors Anopheles Culex Total	sollicitans taeniorhynchus atlanticus confinnis atropos bradleyi salinarius	8200820 8				f <del>1</del>			5	

					·
MS	(mean slope)	FF (frequency	of S.1.	Anopheles and Culex	<u>Aedes</u> and Psorophora
			(3011, 100ex)		
	0.35	5	1,0000	0.37	99.63
	0.05	10	2,0000	35.85	64.15 DO 01
	0.05	15	3,0000	70.09	29.91
	0.05	20	4.0000	95.43	4.57
	0.05	25	5.0000	100.00	0.00
	0.05	30	6,0000	100.00	0.00
	0.05	35	7.0000	100.00	0.00
	0.15	5	0.3333	0.23	99.77
	0,15	10	0.6667	15.11	84.89
	0.15	15	1,0000	32.52	67.48
	0.15	20	1.3333	46.93	53.07
	0.15	25	1.6667	59.37	40,63
	0.15	30	2.0000	70.46	29.54
	0.15	35	2, 3333	80.45	19.55
	0.15	5	0 2000	0.19	99.81
	0.25	10	n 4000	13.35	86.65
	0.25	16	0 6000	27.47	72.53
	0.25	20	n 8000	38,40	61.60
	0.25	20	1 0000	47.53	52.47
	0.25	20	1 2000	55.57	44,43
	0.25	35	1 4000	62.89	37.11
	0.25	,,,	0 1429	0.05	99.95
	0.35	10	0 2857	13,99	86.01
	0.35	15	0.4286	27.16	72.84
	0.35	20	0.5714	36.80	63,20
	0.35	25	0.7143	44.52	55.48
	0.35	30	0.8571	51.16	48.84
	0.35	35	1.0000	57.10	42.90
	0.55 n Lis	ŝ	0,1111	0.00	100.00
	n 45	10	0.2222	15.48	84.52
	0.45	15	0.3333	28.47	71.53
	0.45	20	0,44444	37.5 <b>3</b>	62,47
	0.45	25	0.5556	44.56	55-44
	0.45	30	0,6667	50.44	49,56
	0.45	35	0.7778	55.63	44.37
	0 55	5	0.0909	0.12	99.68
	0.55	10	0.1818	17.47	82.53
	0.55	15	0,2727	30.58	69.42
	0.55	20	0.3636	39.40	60 60
	0.55	25	0.4545	46.04	53.90
	0.55	30	0.5455	51.48	40.74
	0.55	35	0.6364	56.18	45,02
	0.65	5	0.0769	0.44	55,JO 80 10
	0.65	10	0.1538	19.81	66 80
	0.65	15	0,2308	33.20	69.00 69.08
	0.65	20	0.307/	41.92	51.66
	0.65	25	0,3846	40.34	46.50
	0.65	30	0.4615	53.50	42 10
	0.65	35	0.5385	57.90	99.03
	0.75	5	0,0667	22.47	77 57
	0.75	10	0.1333	22.4)	63 83
	0.75	15	0.2000	50.17 66 an	55.10
	0.75	20	0.200/	yu	48.81
	0.75	25	0.3333	56 17	43.83
	0.75	30	0.4000	60.35	39.65
	0 75	35	U.400/ A ACSP	1 74	98.26
	0.85	5	0,0500	25 29	74.71
	0.65	10	0,1170	10 66	60.56
	0.85	15	0.1/00	48 21	51.79
	0.85	20	0,2000	54 47	45.57
	0.85	25	0.6771	59.28	40.72
	0.85	5 U	U. 3749		

· ···- -----

Table 42. Predicted / Relative Abundance Values for <u>Anopheles</u> - <u>Culex</u> and <u>Aedes</u> - <u>Psorophora</u> Species at Representative MS, FF, S.L. Values (Ditched Sites).

Table 42 (Continued)

M\$ (mean slope)	FF (frequency of flooding	\$.I. }	<u>Anopheles</u> and <u>Culex</u>	<u>Aede</u> s and <u>Psorophora</u>
0.85	35	0.4118	63.30	36.70
0.95	5	0.0526	2.73	97.27
0.95	10	0.105 <b>3</b>	28.38	71,62
0.95	15	0.1579	42.94	57.06
0.95	20	0.2105	51.79	48,21
0.95	25	0,2632	57.97	42.03
0.95	30	0.3158	62.73	37.27
0.95	35	0.3684	66.63	33.37
1.05	5	0.0476	3.95	96.05
1.05	10	0.0952	31.67	68.33
1.05	15	0.1429	46.64	53.36
1.05	20	0.1905	5.58	44.42
1.05	25	0.2381	61.75	38.25
1.05	30	0.2857	66.44	33.56
1.05	35	0.3333	70.25	29.75
L.15	5	0.0435	5.39	94.61
1.15	10	0.0870	35.16	64,84
1.15	15	0.1304	50.53	49.47
1.15	20	0.1739	59.56	40.44
1.15	25	0.2174	65.72	34.28
1.15	30	0,2609	70.36	29,64
1.15	35	0.3043	74.10	25.90
1.25	5	0.0400	7.07	92.93
1.25	10	0.0800	38,81	61,19
1.25	15	0.1200	54.58	45.42
1.25	20	0.1600	63.71	36.29
1.25	25	0,2000	69.86	30.14
1.25	30	0.2400	74,46	25.54
1.25	35	0,2800	78,13	21.87

FOSU	NWET	s. I.	% <u>Anopheles</u> and <u>Culex</u>	% <u>Aedes</u> and <u>Psorophora</u>
70	2	1.000	41.39	58.61
70	Ś	3.000	66.47	25.01
70	Ś	5.000	100.00	0.00
02	5	1.000	76.52	23.48
20	15	3,000	100.00	0.00
70	5	5,000	100.00	0.00
20	22	1.000	100,00	00.0
2	25	3.000	100,00	0.00
20	25	5.000	100.00	0,0
2	35	1.000	100.00	0.00
02	35	3.000	100,00	0.00
20	5	5.000	100.00	0.00
8	Ś	1.000	84, 64	50.52
8	Ś	3.000	84.45	15.55
8	Ś	5,000	100.00	0.00
5	5	1.000	86.01	66°E1
8	15	3.000	100.00	0,00
6	5	5,000	100.00	00.0
6	25	1.000	100,00	0.00
6	25	3.000	1 00.00	0.00
06	25	5,000	100.00	0.00
06	35	1.000	100.00	0,00
6	ŝ	3.000	100.001	0.00
6	5	5.000	100.00	0.00

- Psorophora Species at	
Anopheles - Culex and Aedes	(Unditched Sites).
. Predicted / Relative Abundance Values for	Representative FOSW, NWET and S.I. Values
Table (+3,	

"FOSH Frequency of standing water "MNET Number of days/wet period. 150

#### Table 44.

### INCIDENCE OF CRABHOLE BREEDING

### NORTH RIVER STUDY SITE, CARTERET CO., N. C.

Site	No. of holes	<u>Total No.</u> Aedes	Larvae & Pupae Anopheles	Total
4	4 - 12	87	3	90
13	3 - 6	19	26	45
14	10 - 30	137	21	158
16	10 - 20	32	3	35
17	2 - 3	0	2	2
18	1 - 3	7	1	8
20	5 - 10	23	7	30
21	1	103	2	125
23	4 - 5	22	4	6
24	3 - 4	0	4	4
2.		·		503



## BACCHARIS HALIMIFOLIA

FIG. 1

FIG. 2



# BORRICHIA FRUTESCENS





## CLADIUM JAMAICENSE



# DISTICHLIS SPICATA

FIG. 5



## IVA IMBRICATA







## MYRICA CERIFERA





PINUS TAEDA
FIG. 9



## SALICORNIA VIRGINICA









## SPARTINA ALTERNIFLORA



SPARTINA PATENS

FIG. 12